scholarly journals Use of RS and GIS for Land Use/Land Cover of Historical Badami Town, Bagalkot District, India

India is one of the biggest countries and is 7th largest nation in the world; also India is 2nd country in population next to China. The Towns are like trees, both of them grow under natural limits. One of the objectives of any master plan is to guide town development by studying the natural properties of the town border and to determine a suitable direction of town growth. It should include general information for understanding the effective factors on the town’s form. This report is mainly concentrated towards the historic Badami town development to prepare an accurate land use/land cover map on 1:21,000 scale appropriate allocation of land resources of the Badami A need for GIS driven analysis of factors such as urban planning, which in turn create various types of geo-referenced data, GIS was carried out to create, store, edit, visualise, analysis, and to present the data needed for carrying out the allocation of land for meeting various needs of the smart city.After the implementation of the Smart concepts desirable results have obtained and these outputs have the potential to fulfil the need of all the inhabitants without causing any pollution. The outputs of this project would help in sustainable planning to existing town.

2019 ◽  
Vol 11 (14) ◽  
pp. 1677 ◽  
Author(s):  
Lan H. Nguyen ◽  
Geoffrey M. Henebry

Due to a rapid increase in accessible Earth observation data coupled with high computing and storage capabilities, multiple efforts over the past few years have aimed to map land use/land cover using image time series with promising outcomes. Here, we evaluate the comparative performance of alternative land cover classifications generated by using only (1) phenological metrics derived from either of two land surface phenology models, or (2) a suite of spectral band percentiles and normalized ratios (spectral variables), or (3) a combination of phenological metrics and spectral variables. First, several annual time series of remotely sensed data were assembled: Accumulated growing degree-days (AGDD) from the MODerate resolution Imaging Spectroradiometer (MODIS) 8-day land surface temperature products, 2-band Enhanced Vegetation Index (EVI2), and the spectral variables from the Harmonized Landsat Sentinel-2, as well as from the U.S. Landsat Analysis Ready Data surface reflectance products. Then, at each pixel, EVI2 time series were fitted using two different land surface phenology models: The Convex Quadratic model (CxQ), in which EVI2 = f(AGDD) and the Hybrid Piecewise Logistic Model (HPLM), in which EVI2 = f(day of year). Phenometrics and spectral variables were submitted separately and together to Random Forest Classifiers (RFC) to depict land use/land cover in Roberts County, South Dakota. HPLM RFC models showed slightly better accuracy than CxQ RFC models (about 1% relative higher in overall accuracy). Compared to phenometrically-based RFC models, spectrally-based RFC models yielded more accurate land cover maps, especially for non-crop cover types. However, the RFC models built from spectral variables could not accurately classify the wheat class, which contained mostly spring wheat with some fields in durum or winter varieties. The most accurate RFC models were obtained when using both phenometrics and spectral variables as inputs. The combined-variable RFC models overcame weaknesses of both phenometrically-based classification (low accuracy for non-vegetated covers) and spectrally-based classification (low accuracy for wheat). The analysis of important variables indicated that land cover classification for this study area was strongly driven by variables related to the initial green-up phase of seasonal growth and maximum fitted EVI2. For a deeper evaluation of RFC performance, RFC classifications were also executed with several alternative sampling scenarios, including different spatiotemporal filters to improve accuracy of sample pools and different sample sizes. Results indicated that a sample pool with less filtering yielded the most accurate predicted land cover map and a stratified random sample dataset covering approximately 0.25% or more of the study area were required to achieve an accurate land cover map. In case of data scarcity, a smaller dataset might be acceptable, but should not smaller than 0.05% of the study area.


Author(s):  
S. Shrestha

Abstract. Increasing land use land cover changes, especially urban growth has put a negative impact on biodiversity and ecological process. As a consequences, they are creating a major impact on the global climate change. There is a recent concern on the necessity of exploring the cause of urban growth with its prediction in future and consequences caused by this for sustainable development. This can be achieved by using multitemporal remote sensing imagery analysis, spatial metrics, and modeling. In this study, spatio-temporal urban change analysis and modeling were performed for Biratnagar City and its surrounding area in Nepal. Land use land cover map of 2004, 2010, and 2016 were prepared using Landsat TM imagery using supervised classification based on support vector machine classifier. Urban change dynamics, in term of quantity, and pattern was measured and analyzed using selected spatial metrics and using Shannon’s entropy index. The result showed that there is increasing trend of urban sprawl and showed infill characteristics of urban expansion. Projected land use land cover map of 2020 was modeled using cellular automata-based approach. The predictive power of the model was validated using kappa statistics. Spatial distribution of urban expansion in projected land use land cover map showed that there is increasing threat of urban expansion on agricultural land.


The aim of the attempt was to study the Land use/Land cover attributes for environmental management planning for socio economic growth of study area. Evaluation of Land Resources in given study area by Remote sensing and Geographic Information System (GIS) technologies help to generate the spatial information to study the current conditions deliberate to the past conditions data and estimate the future requirements. The IRS-P6 satellite Imagery and Survey of India toposheets data, visual interpretation technique, Arc/Info and Arc View GIS software’s are used to prepare the final Land use/Land cover information. This data is useful for environment and natural resources development management. This type of land information study helps to prepare the Land and water Resources Action plans for conservation of suitable cropping patterns, and improved productivity of the study area and to provide the primary requirements of farmers, to enhance their background conditions and help to develop or enhance decision makers for sustainable development


Author(s):  
◽  
L. Thapa ◽  
D. P. Shukla

Abstract. Changes of agricultural land into non-agricultural land is the main issue of increasing population and urbanization. The objective of this paper is to identify the various land resources and its changes into other Land Use Land Cover (LULC) type. LANDSAT satellite data for 1990, 2000, 2010 and 2018 years of Kailali district Nepal was acquired for supervised LULC mapping and change analysis using ENVI 5.4 software. Sentinel-2 and Google earth satellite data were used for the accuracy assessment of the LULC map. The time-series data analysis from 1990–2000–2010–2018 shows major changes in vegetation and agriculture. The changes in LULC show that settlement and bare land is continuously increasing throughout these years. The change in land use and land cover during the period of 1990–2018 shows that the settlement area is increased by 204%; and agriculture is decreased by 57%. The fluctuating behavior of vegetation, agriculture and water bodies in which the areas decrease and increase over the selected periods is due to natural calamities and migration of the local population. This shows that human influence on the land resources is accelerating and leading to a deterioration of agricultural land. Thus effective agricultural management practices and policies should be carried out at the government level for minimizing land resources degradation by the human-induced impact.


Sign in / Sign up

Export Citation Format

Share Document