scholarly journals An Artificial Neural Network Genetic Algorithm with Shuffled Frog Leap Algorithm for Software Defect Prediction

Defect prediction performances are significant to attain quality of the software and to understand previous errors. In this work, for assessing the classification accuracy, precision, and recall and F measure for various classifiers are used. The artificial neural network optimizations make the assumption that more than two algorithms for one optimization have been implemented. The optimization makes use of a heuristic for choosing the best of the algorithms for being applied in a particular situation. An approach of hybrid optimization for designing of the linkages method and is used for the dimensional synthesis of the mechanism. The ANN models are assisted in their convergence towards a global minimum by the multi-directional search algorithm that is incorporated in the GA. The results have shown an accuracy of classification of the NN-hybrid shuffled from algorithm to perform better by about 5.94% than that of the fuzzy classifiers and by about 3.59% of the NN-Lm training and by about 1.42% of the NN-shuffled frog algorithm..

Defect prediction performances are significant to attain quality of the software and to understand previous errors. In this work, for assessing the classification accuracy, precision, and recall and F measure for various classifiers are used. The artificial neural network optimizations make the assumption that more than two algorithms for one optimization have been implemented. The optimization makes use of a heuristic for choosing the best of the algorithms for being applied in a particular situation. An approach of hybrid optimization for designing of the linkages method and is used for the dimensional synthesis of the mechanism. The ANN models are assisted in their convergence towards a global minimum by the multi-directional search algorithm that is incorporated in the GA. The results have shown an accuracy of classification of the NN-hybrid shuffled from algorithm to perform better by about 5.94% than that of the fuzzy classifiers and by about 3.59% of the NN-Lm training and by about 1.42% of the NN-shuffled frog algorithm..


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Pei-Fang (Jennifer) Tsai ◽  
Po-Chia Chen ◽  
Yen-You Chen ◽  
Hao-Yuan Song ◽  
Hsiu-Mei Lin ◽  
...  

For hospitals’ admission management, the ability to predict length of stay (LOS) as early as in the preadmission stage might be helpful to monitor the quality of inpatient care. This study is to develop artificial neural network (ANN) models to predict LOS for inpatients with one of the three primary diagnoses: coronary atherosclerosis (CAS), heart failure (HF), and acute myocardial infarction (AMI) in a cardiovascular unit in a Christian hospital in Taipei, Taiwan. A total of 2,377 cardiology patients discharged between October 1, 2010, and December 31, 2011, were analyzed. Using ANN or linear regression model was able to predict correctly for 88.07% to 89.95% CAS patients at the predischarge stage and for 88.31% to 91.53% at the preadmission stage. For AMI or HF patients, the accuracy ranged from 64.12% to 66.78% at the predischarge stage and 63.69% to 67.47% at the preadmission stage when a tolerance of 2 days was allowed.


2021 ◽  
Vol 11 (15) ◽  
pp. 7136
Author(s):  
Zhichao Xue ◽  
Weidong Cao ◽  
Shutang Liu ◽  
Fei Ren ◽  
Qilun Wu

With the advancement of intelligent compaction technology, real-time quality control has been widely investigated on the subgrade, while it is insufficient on asphalt pavement. This paper aims to estimate the real-time compaction quality of hot mix asphalt (HMA) using an artificial neural network (ANN) classifier. A field experiment of HMA compaction was designed. The vibration patterns of the drum were identified by using the ANN classifier and classified based on the compaction levels. The vibration signals were collected and the degree of compaction was measured in the field experiment. The collected signals were processed and the features of vibration patterns were extracted. The processed signals were tagged with their corresponding compaction level to form the sample dataset to train the ANN models. Four ANN models with different hidden layer setups were considered to investigate the effect of hidden layer structure on performance. To test the performance of the ANN classifier, the predictions made by ANN were compared with the measuring results from a non-nuclear density gauge (NNDG). The testing results show that the ANN classifier has good performance and huge potential for estimating the compaction quality of HMA in real-time.


Background: A wide usage of impulse ultrawideband subsurface radars for a number of practical approaches in archeology, construction and humanitarian demining is holding back because of presence of noises and clutters of high level in the reflected field. It often makes the object classification practically unreal for at not big depths and distances from receiving and transmitting antennas. Besides of using special antenna system designs to improve recognition results, it is interesting to apply modern digital signal filtering techniques. Objectives: To investigate the influence of denoising on the quality of artificial neural network recognition of subsurface objects and their coordinates for a model of additive gaussian noise of a different noise level. Materials and methods: In this paper the idea of improving the stability of recognition of hidden objects in the presence of outside noise by previous processing of input signals with the latest popular noise reduction methods, such as the caterpillar method and wavelet transform method is verified. To eliminate the randomness of the result of the neural network response for each realization of the additive noise of a given level, a sufficient number of attempts are calculated for each of the methods, and statistics are provided to illustrate the effectiveness of each of the approaches. To check the hypothesis of the efficiency of input signal denoising the numerical simulation of the model of a real ground surface with subsurface object is carried out by means of Finite Difference Time Domain method (FDTD). The artificial neural network is trained on the obtained ideal time dependences of the amplitudes of the reflected field to correctly recognize the position of the object. The training is subsequently checked on the same input signals with additional noise of a certain level. Recognition errors in the last case are compared with similar errors when popular noise reduction procedures are applied to noisy input signals. Results: It is demonstrated that artificial neural networks have good approximating properties capable to effectively resist the noises in the input signals It is shown that for all noise levels, the caterpillar method statistically degrades the quality of an object recognition. The wavelet-transform method statistically improves slightly the classification of objects than for absence of denoising, but this result is not stable. Conclusion: For effective application of methods of noise filtration in received signals of impulse radar it is nessusary to have previous knowledge about noise character or peculiarities of useful signal. Implementation of denoising techniques without the use of this knowledge cannot improve the recognition quality of surface objects.


Author(s):  
Olatunji B. L. ◽  
Olabiyisi S. O. ◽  
Oyeleye C. A. ◽  
Sanusi B. A. ◽  
Olowoye A. O. ◽  
...  

<span>Software testing is an activity to enable a system is bug free during execution process. The software bug prediction is one of the most encouraging exercises of the testing phase of the software improvement life cycle. In any case, in this paper, a framework was created to anticipate the modules that deformity inclined in order to be utilized to all the more likely organize software quality affirmation exertion. Genetic Algorithm was used to extract relevant features from the acquired datasets to eliminate the possibility of overfitting and the relevant features were classified to defective or otherwise modules using the Artificial Neural Network. The system was executed in MATLAB (R2018a) Runtime environment utilizing a statistical toolkit and the performance of the system was assessed dependent on the accuracy, precision, recall, and the f-score to check the effectiveness of the system. In the finish of the led explores, the outcome indicated that ECLIPSE JDT CORE, ECLIPSE PDE UI, EQUINOX FRAMEWORK and LUCENE has the accuracy, precision, recall and the f-score of 86.93, 53.49, 79.31 and 63.89% respectively, 83.28, 31.91, 45.45 and 37.50% respectively, 83.43, 57.69, 45.45 and 50.84% respectively and 91.30, 33.33, 50.00 and 40.00% respectively. This paper presents an improved software predictive system for the software defect detections.</span>


2020 ◽  
pp. 61-64
Author(s):  
Yu.G. Kabaldin ◽  
A.A. Khlybov ◽  
M.S. Anosov ◽  
D.A. Shatagin

The study of metals in impact bending and indentation is considered. A bench is developed for assessing the character of failure on the example of 45 steel at low temperatures using the classification of acoustic emission signal pulses and a trained artificial neural network. The results of fractographic studies of samples on impact bending correlate well with the results of pulse recognition in the acoustic emission signal. Keywords acoustic emission, classification, artificial neural network, low temperature, character of failure, hardness. [email protected]


Sign in / Sign up

Export Citation Format

Share Document