scholarly journals Effect of Taper Manifolds with Different Slopes in Microchannel Heat Sink

In this analysis, the liquid flow and heat transfer in micro channel heat sink (MCHS) to find the pressure drop are experimentally investigated by three degree slope in manifolds in addition to the arrangement of micro channels. This experimental analysis is executed with respect to the Nusselt Number and Heat transfer characteristics for three manifolds with different arrangement. We are working on this experiment at three different arrangement manifolds: Arrangement (A) is the three-degree slope in manifolds downward and upward, Arrangement (B) is the three-degree slope in manifolds upward and downward and Arrangement (C) is the three-degree slope in upward direction of the manifolds are selected. In this investigation we are using the Reynolds number ranging from 705-1411 for micro channel heat sink. The Arrangement (A) is the greater heat transfer coefficient within the increase Nusselt number and velocity and low pressure drop in comparison to Arrangement (B) and (C) type manifolds

2015 ◽  
Vol 813-814 ◽  
pp. 685-689
Author(s):  
M. Vijay Anand Marimuthu ◽  
B. Venkatraman ◽  
S. Kandhasamy

This paper investigates the performance and characteristics of saw tooth shape micro channel in the theoretical level. If the conduct area of the nano fluid increases the heat transfer also increases. The performance curve has drawn Reynolds number against nusselt number, heat transfer co efficient. Pressure drop plays an important role in this device. If pressure drop is high the heat transfer increases. The result in this experiment shows clearly that the heat transfer is optimized.


Author(s):  
Darryl Jennings ◽  
Sonya Smith

The goal of this research is to present an analytical model of nanostructures and study the effects of their geometry on the performance of micro channels. The pressure drop experienced by micro channels is of interest as it presents a limit on forced convection heat transfer. This work will demonstrate how the presence of nanostructures alleviates pressure drop and results in enhanced cooling capabilities. Multiple transient analyses were performed in ANSYS FLUENT to ascertain performance characteristics of microchannels without the presence of hydrophobic nanostructures. The results were compared to the analytical model developed in this study.


Author(s):  
Poh-Seng Lee ◽  
Suresh V. Garimella

Recesses created in the lid of a microchannel heat sink can serve to modulate the flow, resulting in local and global heat transfer enhancement. Numerical analysis of laminar flow and heat transfer in such a modified microchannel heat sink has shown an augmentation of heat transfer without an added penalty of increased pressure drop. The presence of the recesses reduces the overall flow friction and thus pressure drop. The flow expansion into the recesses and the subsequent contraction into the downstream region causes significant local enhancement in heat transfer. Both the maximum and average wall temperatures are decreased as a result. The heat transfer is locally enhanced, by as much as 150% in the regions just downstream of the recesses due to the re-initialization of boundary layers as the flow re-enters the microchannels. The potential for hot-spot mitigation in microelectronics devices using this approach is discussed.


Author(s):  
K Bala Subrahmanyam ◽  
Pritam Das ◽  
Aparesh Datta

In the present study, a detailed numerical simulations of liquid flow in microchannel heat sink with four different geometry of ribs: rectangular (RR), backward triangular (BTR), forward triangular (FTR) and diamond (DR) arranged symmetrically inside reentrant fan shaped cavities (FC) on side walls has been conducted and compared with smooth channel (SC) to acquire fluid flow and heat transfer characteristics between Reynolds numbers of 136−588. The local pressure, temperature and heat transfer coefficients were determined to understand the convective heat transfer regimes and to analyze local flow behavior. The three-dimensional conjugate heat transfer model, investigation is done extensively to identify the influence of geometrical parameters towards augmenting thermal performance with parametric optimization. Evolved governing equations are solved by using SIMPLEC algorithm. Attempt has been made to improve heat extraction ability with reasonable pressure drop by replacing the existing simple design of microsink. It is observed that Nusselt number and friction factor are in good agreement with previous experimental data. Based on detailed parametric study, it was found that FC-RR is good in achieving maximum Nusselt number, but due to higher pressure drop penalty giving lower performance. Out of four proposed, FC-DR is conferring upstanding balance between heat transfer, pressure drop and giving the best thermal performance of 1.97 at Re = 391.47.


Author(s):  
Zhiwei Chen ◽  
Peng Qian ◽  
Zizhen Huang ◽  
Chengyuan Luo ◽  
Minghou Liu

Author(s):  
Weilin Qu ◽  
Seok-Mann Yoon ◽  
Issam Mudawar

Knowledge of flow pattern and flow pattern transitions is essential to the development of reliable predictive tools for pressure drop and heat transfer in two-phase micro-channel heat sinks. In the present study, experiments were conducted with adiabatic nitrogen-water two-phase flow in a rectangular micro-channel having a 0.406 × 2.032 mm cross-section. Superficial velocities of nitrogen and water ranged from 0.08 to 81.92 m/s and 0.04 to 10.24 m/s, respectively. Flow patterns were first identified using high-speed video imaging, and still photos were then taken for representative patterns. Results reveal that the dominant flow patterns are slug and annular, with bubbly flow occurring only occasionally; stratified and churn flow were never observed. A flow pattern map was constructed and compared with previous maps and predictions of flow pattern transition models. Annual flow is identified as the dominant flow pattern for conditions relevant to two-phase micro-channel heat sinks, and forms the basis for development of a theoretical model for both pressure drop and heat transfer in micro-channels. Features unique to two-phase micro-channel flow, such as laminar liquid and gas flows, smooth liquid-gas interface, and strong entrainment and deposition effects are incorporated into the model. The model shows good agreement with experimental data for water-cooled heat sinks.


2004 ◽  
Vol 126 (2) ◽  
pp. 247-255 ◽  
Author(s):  
Duckjong Kim ◽  
Sung Jin Kim

In the present work, a compact modeling method based on a volume-averaging technique is presented. Its application to an analysis of fluid flow and heat transfer in straight fin heat sinks is then analyzed. In this study, the straight fin heat sink is modeled as a porous medium through which fluid flows. The volume-averaged momentum and energy equations for developing flow in these heat sinks are obtained using the local volume-averaging method. The permeability and the interstitial heat transfer coefficient required to solve these equations are determined analytically from forced convective flow between infinite parallel plates. To validate the compact model proposed in this paper, three aluminum straight fin heat sinks having a base size of 101.43mm×101.43mm are tested with an inlet velocity ranging from 0.5 m/s to 2 m/s. In the experimental investigation, the heat sink is heated uniformly at the bottom. The resulting pressure drop across the heat sink and the temperature distribution at its bottom are then measured and are compared with those obtained through the porous medium approach. Upon comparison, the porous medium approach is shown to accurately predict the pressure drop and heat transfer characteristics of straight fin heat sinks. In addition, evidence indicates that the entrance effect should be considered in the thermal design of heat sinks when Re Dh/L>∼O10.


Sign in / Sign up

Export Citation Format

Share Document