scholarly journals A New Topology on Twenty one level Inverter with Reduced Number of Switches

2019 ◽  
Vol 8 (2) ◽  
pp. 1230-1233

The Multilevel inverters are known for their high power capability and reliability. They produce the output in the form of staircase waveform. If the number of level increases then almost perfect sine wave can be attained at the output. The increase in number of levels improves the power quality but it also increases the complexity in control and cost, which will increase the switching losses also. Hence there is a need for research in the multilevel inverter topology to have reduced number of switches for increased levels than the conventional and pre-proposed topologies. The purpose of this paper is to design the new topology on multilevel inverter with reduced switching devices

2017 ◽  
Vol 7 (1.5) ◽  
pp. 209
Author(s):  
B.Vijaya Krishna ◽  
B. Venkata Prashanth ◽  
P. Sujatha

Multilevel Inverters (MLI) have very good features when compared to Inverters. But using more switches in the conventional configuration will reduce its application in a wider range. For that reason a modified 7-level MLI Topology is presented. This new topology consists of less number of switches that can be reduced to the maximum extent and a separate gate trigger circuit. This will reduce the switching losses, reduce the size of the multilevel inverter, and cost of installation. This new topology can be used in Electrical drives and renewable energy applications. Performance of the new MLI is tested via. Total harmonic distortion. This construction structure of this multilevel inverter topology can also be increased for 9-level, 11-level and so on and simulated by the use of MATLAB/SIMULINK. A separate Carrier Based PWM Technique is used for the pulse generation in this configuration.


Author(s):  
Hussain M. Bassi

<p>This paper presented and studied a new switching scheme for floating source multilevel inverters to produce more levels with the same number of switching devices. In the proposed scheme, the function of the dc sources, except the inner one, is to build up square wave or blocks that is close in the shape to the desired sinusoidal wave. The job of the inner switching devices is to increase the number of the levels to produce smother sinusoidal wave in the inverter output. This job can be done by adding or subtracting the value of the inner dc source to/from the blocks. The topology used in this paper is based on the conventional floating source multi-level inverter using two legs. This topology and modulation technique show substantial reduction in the total harmonics distortion when the modulation technique is the hybrid method. The performance of the proposed switching scheme in generating more levels has been evaluated by PSCAD/EMTDC simulation.</p>


Author(s):  
Srinivas Rao Janiga ◽  
P. Srinivasa Varma ◽  
T. Suresh Kumar

Multilevel Inverters offers eminent solutions to high voltage high power applications due to the association of several devices in a series configuration. This is moderate because of getting superior quality voltage waveform when using multilevel inverters as compared to form two-level inverters. Most of the problems raised in this study are the restriction of many switching devices, which can afford high voltage are preferred in the inverter. Here, a novel multilevel inverter topology with no transformers, less number of switching devices and gate drive circuits are proposed. The proposed inverter topologies can valid more voltage levels with favorable advantages such as less number of switching devices and gate driving circuits and also reduce to humble size, agreeable voltage profile. In this paper multilevel converter fed BLDC drive with different voltage levels and simulation analysis is presented. The validity of the proposed three-phase 21-level multilevel inverter fed to BLDC motor drive scheme is verified through Matlab/Simulink Platform.


2022 ◽  
Vol 18 (1) ◽  
pp. 48-57
Author(s):  
Aws Al-Jrew ◽  
Jawad Mahmood ◽  
Ramzy Ali

In this article, a comparison of innovative multilevel inverter topology with standard topologies has been conducted. The proposed single phase five level inverter topology has been used for induction heating system. This suggested design generates five voltage levels with a fewer number of power switches. This reduction in number of switches decreases the switching losses and the number of driving circuits and reduce the complexity of control circuit. It also reduces the cost and size for the filter used. Analysis and comparison has been done among the conventional topologies (neutral clamped and cascade H-bridge multilevel inverters) with the proposed inverter topology. The analysis includes the total harmonic distortion THD, efficiency and overall performance of the inverter systems. The simulation and analysis have been done using MATLAB/ SIMULINK. The results show good performance for the proposed topology in comparison with the conventional topologies.


The commencement of multilevel inverter has enamored the researchers owing to its applications for medium and high power. Moreover there has consistently been a necessity for an approach with reduced number of switches. Bearing this in mind, this article presents an asymmetrical multilevel inverter with a switching approach employing reduced number of power electronics equipments. The increase in the level of output, number of switching equipments besides with the switching states enhances. As a consequence, higher switching losses occurs that prompts power loss. Accordingly, the efficiency of the complete conversion network diminishes. The significant characteristics of this submitted work is that the module can be accomplished as sub multiple level assembly. Progressively, with minimal rise in the switching elements, all number of levels can be elongated.


2018 ◽  
Vol 69 (3) ◽  
pp. 233-238
Author(s):  
Cajethan M. Nwosu ◽  
Cosmas U. Ogbuka ◽  
Stephen E. Oti

Abstract An analysis, design and simulation of digital controlled symmetrical seven levels inverter is presented in this paper. Against the contemporary use of two asymmetrical DC sources with two H-bridge cells to generate seven levels inverter two DC sources of equal voltage ratings are used through digital control strategy to realize seven levels output voltage. By utilizing limited number of active switching components and avoiding the usual complex PWM control techniques for multilevel inverters by way of digital control strategy, high efficiency multilevel inverter systems due to reduction in total harmonic distortion and switching losses is guaranteed. Owing to symmetry of the H-bridge cells, a simple and single programmed counter built around J-K flip is required irrespective of number of cascades. The analyzed and designed system has been simulated in MATLAB/SIMULINK environment. With an R-L load of 200 Ω and 200 mH, improved total harmonic distortions (THDs) for the inverter current and voltage are 7.59% and 16.89% respectively. The obtained results show that the control-circuit-based multilevel inverter topology is most suited for applications in solar powered inverter systems.


Author(s):  
Hussain M. Bassi

<p>This paper presented and studied a new switching scheme for floating source multilevel inverters to produce more levels with the same number of switching devices. In the proposed scheme, the function of the dc sources, except the inner one, is to build up square wave or blocks that is close in the shape to the desired sinusoidal wave. The job of the inner switching devices is to increase the number of the levels to produce smother sinusoidal wave in the inverter output. This job can be done by adding or subtracting the value of the inner dc source to/from the blocks. The topology used in this paper is based on the conventional floating source multi-level inverter using two legs. This topology and modulation technique show substantial reduction in the total harmonics distortion when the modulation technique is the hybrid method. The performance of the proposed switching scheme in generating more levels has been evaluated by PSCAD/EMTDC simulation.</p>


2020 ◽  
Vol 10 (3) ◽  
pp. 5719-5723
Author(s):  
B. M. Manjunatha ◽  
S. Nagaraja Rao ◽  
A. Suresh Kumar ◽  
K. Shaguftha Zabeen ◽  
S. Lakshminarayanan ◽  
...  

This paper proposes an optimized Multi-Level Inverter (MLI) topology with symmetrical and asymmetrical DC sources for sustainable energy applications. The proposed MLI has optimized components to reduce size, cost, and installation area in comparison with traditional MLIs. It also improves output power quality by reducing harmonics in the stepped output, and hence it can be used for sustainable energy applications with a grid interface. The proposed inverter is equipped with six switching devices, one clamping diode, and two DC sources. It produces a five-level stepped output when using symmetrical DC sources and a seven-level stepped output when using asymmetrical DC sources. In this topology, the six switching devices are divided into two units, namely the level generator and the polarity generator units, the switches used in the level generator are responsible for producing the required number of levels in the form of rectified stepped output and the switches used in the polarity generator are responsible for converting the rectified stepped waveform to stepped AC output. The simulation results verify the operation of the MLI when fed with linear load with symmetrical and asymmetrical DC sources, and the experimental output results are presented for validation.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
S. Umashankar ◽  
T. S. Sreedevi ◽  
V. G. Nithya ◽  
D. Vijayakumar

Though the multilevel inverters hold attractive features, usage of more switches in the conventional configuration poses a limitation to its wide range application. Therefore, a renewed 7-level multilevel inverter topology is introduced incorporating the least number of unidirectional switches and gate trigger circuitry, thereby ensuring the minimum switching losses, reducing size and installation cost. The new topology is well suited for drives and renewable energy applications. The performance quality in terms of THD and switching losses of the new MLI is compared with conventional cascaded MLI and other existing 7-level reduced switch topologies using carrier-based PWM techniques. The results are validated using MATLAB/SIMULINK.


Multilevel inverters produced lot of interest in academia and industry as they are becoming feasible technology for number of applications. These are considered as the progressing power converter topologies. To generate a quality output waveform with minimum number of switches, reduced switch multilevel inverter topologies has come in focus. This paper introduces a modified symmetrical MLI with reduced component count thereby ensuring the minimum switching losses, reduced total harmonic distortion, Size and installation cost. By proper combination of switches it produces a staircase output waveform with low harmonic distortion. In this paper novel symmetrical inverter topology with reduced component count based on level shift phase opposition and disposition PWM (PODPWM) is proposed. The results are validated using MATLAB/SIMULINK.


Sign in / Sign up

Export Citation Format

Share Document