scholarly journals Multilevel Inverter Topology with Reduced Number of Switches

The commencement of multilevel inverter has enamored the researchers owing to its applications for medium and high power. Moreover there has consistently been a necessity for an approach with reduced number of switches. Bearing this in mind, this article presents an asymmetrical multilevel inverter with a switching approach employing reduced number of power electronics equipments. The increase in the level of output, number of switching equipments besides with the switching states enhances. As a consequence, higher switching losses occurs that prompts power loss. Accordingly, the efficiency of the complete conversion network diminishes. The significant characteristics of this submitted work is that the module can be accomplished as sub multiple level assembly. Progressively, with minimal rise in the switching elements, all number of levels can be elongated.

2019 ◽  
Vol 16 (1) ◽  
pp. 18 ◽  
Author(s):  
Thiyagarajan V ◽  
Somasundaran P

Multilevel inverter plays an important role in the field of modern power electronics and is widely being used for many high voltage and high power industrial and commercial applications. The objective of this paper is to design and simulate the modified asymmetric multilevel inverter topology with reduced number of switches. The proposed inverter topology synthesizes 21-level output voltage during symmetric operation using three DC voltage sources and twelve switches 8 main switches and 4 auxiliary switches. The different methods of calculating the switching angles are presented in this paper. The MATLAB/Simulink software is used to simulate the proposed inverter. The performance of the proposed inverter is analyzed and the corresponding simulation results are presented in this paper.


2019 ◽  
Vol 8 (2) ◽  
pp. 1230-1233

The Multilevel inverters are known for their high power capability and reliability. They produce the output in the form of staircase waveform. If the number of level increases then almost perfect sine wave can be attained at the output. The increase in number of levels improves the power quality but it also increases the complexity in control and cost, which will increase the switching losses also. Hence there is a need for research in the multilevel inverter topology to have reduced number of switches for increased levels than the conventional and pre-proposed topologies. The purpose of this paper is to design the new topology on multilevel inverter with reduced switching devices


2017 ◽  
Vol 7 (1.5) ◽  
pp. 209
Author(s):  
B.Vijaya Krishna ◽  
B. Venkata Prashanth ◽  
P. Sujatha

Multilevel Inverters (MLI) have very good features when compared to Inverters. But using more switches in the conventional configuration will reduce its application in a wider range. For that reason a modified 7-level MLI Topology is presented. This new topology consists of less number of switches that can be reduced to the maximum extent and a separate gate trigger circuit. This will reduce the switching losses, reduce the size of the multilevel inverter, and cost of installation. This new topology can be used in Electrical drives and renewable energy applications. Performance of the new MLI is tested via. Total harmonic distortion. This construction structure of this multilevel inverter topology can also be increased for 9-level, 11-level and so on and simulated by the use of MATLAB/SIMULINK. A separate Carrier Based PWM Technique is used for the pulse generation in this configuration.


2021 ◽  
Vol 17 (1) ◽  
pp. 1-13
Author(s):  
Adala Abdali ◽  
Ali Abdulabbas ◽  
Habeeb Nekad

The multilevel inverter is attracting the specialist in medium and high voltage applications, among its types, the cascade H bridge Multi-Level Inverter (MLI), commonly used for high power and high voltage applications. The main advantage of the conventional cascade (MLI) is generated a large number of output voltage levels but it demands a large number of components that produce complexity in the control circuit, and high cost. Along these lines, this paper presents a brief about the non-conventional cascade multilevel topologies that can produce a high number of output voltage levels with the least components. The non-conventional cascade (MLI) in this paper was built to reduce the number of switches, simplify the circuit configuration, uncomplicated control, and minimize the system cost. Besides, it reduces THD and increases efficiency. Two topologies of non-conventional cascade MLI three phase, the Nine level and Seventeen level are presented. The PWM technique is used to control the switches. The simulation results show a better performance for both topologies. THD, the power loss and the efficiency of the two topologies are calculated and drawn to the different values of the Modulation index (ma).


2019 ◽  
Vol 28 (06) ◽  
pp. 1950089 ◽  
Author(s):  
V. Thiyagarajan ◽  
P. Somasundaram ◽  
K. Ramash Kumar

Multilevel inverter (MLI) has become more popular in high power, high voltage industries owing to its high quality output voltage waveform. This paper proposes a novel single phase extendable type MLI topology. The term ‘extendable’ is included since the presented topology can be extended with maximum number of dc voltage sources to synthesize larger output levels. This topology can be operated in both symmetrical and asymmetrical conditions. The major advantages of the proposed inverter topology include minimum switching components, reduced gate driver circuits, less harmonic distortion and reduced switching losses. The comparative analysis based on the number of switches, dc voltage sources and conduction switches between the proposed topology and other existing topologies is presented in this paper. The comparison results show that the proposed inverter topology requires fewer components. The performance of the proposed MLI topology has been analyzed in both symmetrical and asymmetrical conditions. The simulation model is developed using MATLAB/SIMULINK software to verify the performance of the proposed inverter topology and also the feasibility of the presented topology during the symmetrical condition has been validated experimentally.


2011 ◽  
Vol 383-390 ◽  
pp. 1077-1083
Author(s):  
Run Hua Liu ◽  
Gang Wang

The paper presents the inverter method which based on cascade multilevel inverter and MOSFET-assisted soft-switching of IGBT and modulation strategy against the double requirement of high-power inverter and high frequency. The method can effectively improve the output voltage, reduce harmonic distortion and switching losses, improve the switching frequency and meet the double requirement of the high-power inverter and high frequency. The method proved to be feasible by simulation and experiment.


Sign in / Sign up

Export Citation Format

Share Document