A Modulation Scheme for Floating Source Multilevel Inverter Topology with Increased Number of Output Levels

Author(s):  
Hussain M. Bassi

<p>This paper presented and studied a new switching scheme for floating source multilevel inverters to produce more levels with the same number of switching devices. In the proposed scheme, the function of the dc sources, except the inner one, is to build up square wave or blocks that is close in the shape to the desired sinusoidal wave. The job of the inner switching devices is to increase the number of the levels to produce smother sinusoidal wave in the inverter output. This job can be done by adding or subtracting the value of the inner dc source to/from the blocks. The topology used in this paper is based on the conventional floating source multi-level inverter using two legs. This topology and modulation technique show substantial reduction in the total harmonics distortion when the modulation technique is the hybrid method. The performance of the proposed switching scheme in generating more levels has been evaluated by PSCAD/EMTDC simulation.</p>

Author(s):  
Hussain M. Bassi

<p>This paper presented and studied a new switching scheme for floating source multilevel inverters to produce more levels with the same number of switching devices. In the proposed scheme, the function of the dc sources, except the inner one, is to build up square wave or blocks that is close in the shape to the desired sinusoidal wave. The job of the inner switching devices is to increase the number of the levels to produce smother sinusoidal wave in the inverter output. This job can be done by adding or subtracting the value of the inner dc source to/from the blocks. The topology used in this paper is based on the conventional floating source multi-level inverter using two legs. This topology and modulation technique show substantial reduction in the total harmonics distortion when the modulation technique is the hybrid method. The performance of the proposed switching scheme in generating more levels has been evaluated by PSCAD/EMTDC simulation.</p>


Author(s):  
Srinivas Rao Janiga ◽  
P. Srinivasa Varma ◽  
T. Suresh Kumar

Multilevel Inverters offers eminent solutions to high voltage high power applications due to the association of several devices in a series configuration. This is moderate because of getting superior quality voltage waveform when using multilevel inverters as compared to form two-level inverters. Most of the problems raised in this study are the restriction of many switching devices, which can afford high voltage are preferred in the inverter. Here, a novel multilevel inverter topology with no transformers, less number of switching devices and gate drive circuits are proposed. The proposed inverter topologies can valid more voltage levels with favorable advantages such as less number of switching devices and gate driving circuits and also reduce to humble size, agreeable voltage profile. In this paper multilevel converter fed BLDC drive with different voltage levels and simulation analysis is presented. The validity of the proposed three-phase 21-level multilevel inverter fed to BLDC motor drive scheme is verified through Matlab/Simulink Platform.


2020 ◽  
Vol 10 (3) ◽  
pp. 5719-5723
Author(s):  
B. M. Manjunatha ◽  
S. Nagaraja Rao ◽  
A. Suresh Kumar ◽  
K. Shaguftha Zabeen ◽  
S. Lakshminarayanan ◽  
...  

This paper proposes an optimized Multi-Level Inverter (MLI) topology with symmetrical and asymmetrical DC sources for sustainable energy applications. The proposed MLI has optimized components to reduce size, cost, and installation area in comparison with traditional MLIs. It also improves output power quality by reducing harmonics in the stepped output, and hence it can be used for sustainable energy applications with a grid interface. The proposed inverter is equipped with six switching devices, one clamping diode, and two DC sources. It produces a five-level stepped output when using symmetrical DC sources and a seven-level stepped output when using asymmetrical DC sources. In this topology, the six switching devices are divided into two units, namely the level generator and the polarity generator units, the switches used in the level generator are responsible for producing the required number of levels in the form of rectified stepped output and the switches used in the polarity generator are responsible for converting the rectified stepped waveform to stepped AC output. The simulation results verify the operation of the MLI when fed with linear load with symmetrical and asymmetrical DC sources, and the experimental output results are presented for validation.


2019 ◽  
Vol 8 (2) ◽  
pp. 1230-1233

The Multilevel inverters are known for their high power capability and reliability. They produce the output in the form of staircase waveform. If the number of level increases then almost perfect sine wave can be attained at the output. The increase in number of levels improves the power quality but it also increases the complexity in control and cost, which will increase the switching losses also. Hence there is a need for research in the multilevel inverter topology to have reduced number of switches for increased levels than the conventional and pre-proposed topologies. The purpose of this paper is to design the new topology on multilevel inverter with reduced switching devices


2020 ◽  
Vol 6 (7) ◽  
pp. 24-31
Author(s):  
Sandeep Kumar ◽  
Abhimanyu Kumar

With increasing demand for high power energy which is fulfilled by use of semiconductors with higher voltage and current to execute such applications. In order to derive high power from medium power-based semiconductors, multilevel inverters are considered to be best solution with advantages over conventional resources. An advanced multi-level inverter topology is offered to optimize the number of switches and improve THD.


2017 ◽  
Vol 7 (1.5) ◽  
pp. 209
Author(s):  
B.Vijaya Krishna ◽  
B. Venkata Prashanth ◽  
P. Sujatha

Multilevel Inverters (MLI) have very good features when compared to Inverters. But using more switches in the conventional configuration will reduce its application in a wider range. For that reason a modified 7-level MLI Topology is presented. This new topology consists of less number of switches that can be reduced to the maximum extent and a separate gate trigger circuit. This will reduce the switching losses, reduce the size of the multilevel inverter, and cost of installation. This new topology can be used in Electrical drives and renewable energy applications. Performance of the new MLI is tested via. Total harmonic distortion. This construction structure of this multilevel inverter topology can also be increased for 9-level, 11-level and so on and simulated by the use of MATLAB/SIMULINK. A separate Carrier Based PWM Technique is used for the pulse generation in this configuration.


Smart grid technology can be best utilized by having proper grid supporting equipment. This paper demonstrates the use of a three-phase, 9-level, hybridised cascaded multi-level inverter topology in a smart grid. A pulse width modulation scheme with phase disposition is employed in this inverter to control the firing signals to operate this circuit. These firing signals can be monitored and controlled for optimal usage in smart grid operation. Operational principles with switching equations are described in detail. Crucial voltage identification has been performed by analyzing the THD in output during source shortages by performing Fast Fourier transform analysis. Least THD of 15.82% is attained in the output voltage waveform of the proposed three phase inverter topology.


2021 ◽  
Vol 6 (1) ◽  
pp. 63-73
Author(s):  
Hossein Khoun-Jahan ◽  

Cascaded multilevel inverter (CMI) topology is prevalent in many applications. However, the CMI requires many switches and isolated dc sources, which is the main drawback of this type of inverter. As a result, the volume, cost and complexity of the CMI topology are increased and the efficiency is deteriorated. This paper thus proposes a switched-capacitor-based multilevel inverter topology with half-bridge cells and only one dc source. Compared to the conventional CMI, the proposed inverter uses almost half the number of switches, while maintaining a boosting capability. Additionally, the main drawback of switched-capacitor multilevel inverters is the capacitor inrush current. This problem is also averted in the proposed topology by using a charging inductor or quasi-resonant capacitor charging with a front-end boost converter. Simulation results and lab-scale experimental verifications are provided to validate the feasibility and viability of the proposed inverter topology.


Author(s):  
Saminathan S & Dr. Ranjithkumar K

In this work, a new modular multilevel inverter topology is introduced for a single phase grid connected Photovoltaic system. This multilevel inverter use less number of switches to generate seven levels compared to other conventional multilevel inverters. This requires only one isolated dc source to operate. So it is suitable for renewable energy application. This inverter is designed by submodule configuration; each sub module contains two switches and one DC link capacitor. The sub modules will be added to the inverter depending on number of levels. The voltage balancing of DC link capacitor is carried out by Y matrix PWM technique. Because of Y matrix PWM technique, the inverter gets a self capacitor voltage balancing ability. So there is no need of external devices required for balancing the voltage of capacitor. A PLL for grid integration and LCL filter are designed and integrated with this inverter. The simulation of proposed system is carried out by MATLAB/SIMULINK and performance of THD is monitored as per standards


Author(s):  
Saifullah Kakar ◽  
S. M. Ayob ◽  
M. Saad Bin Arif ◽  
N.M. Nordin ◽  
Z. Daud ◽  
...  

This paper presents a new multilevel inverter based on the switched-capacitor technique. The topology aims for renewable energy and fuel cell applications that demand high magnitude output ac voltage. This configuration of the inverter can produce a total of thirteen voltage levels using a single DC source. The topology features voltage boosting with a triple gain of the input voltage source without utilizing a boost DC-DC converter. Furthermore, the voltages of the capacitors are self-balanced at any desired voltage level during each cycle. Therefore, auxiliary circuits are no longer needed. A comparative study of the presented inverter with the classical topologies and recently introduced topologies has been done in power switches, driver circuits, blocking voltage of the switches, and boosting the input voltage. A simple fundamental switching scheme is applied to the proposed topology to validate the viability of the topology.


Sign in / Sign up

Export Citation Format

Share Document