scholarly journals Cement Partially Replaced With Fly Ash and Carbon Fiber in Light Weight Concrete

Mechanical Strength properties of fiber reinforced light weight concrete are investigated and studied with normal concrete. Four concrete mixes were taken in different percentages of fly ash, carbon fiber and LECA. Fifty-Four cubes (six for each mixes) and Thirty six cylinders (four for each mixes) were tested. The investigation include 7 and 28 days of strength properties of concrete mixes. As the increase in percentage of fly ash and carbon fiber the compressive and split tensile values were decreased and vice versa. Light weight concrete gives low density than conventional concrete. Plastic shrinkage crack decreases with the percentage increase of LECA (Light Weight Expanded Clay Aggregate)

2018 ◽  
Vol 7 (3.12) ◽  
pp. 880
Author(s):  
V Vishnu Priya ◽  
P Bhuvaneswari ◽  
K Saravana Raja Mohan

The main aim of this study is to decrease the density and the dead load of the structure by using Light weight concrete (LWC). In this study Pumice aggregate was replaced with the conventional coarse aggregate. To enhance the strength of the concrete, cement was partially replaced with mineral admixtures, Ground Granulated Blast Slag (GGBS) and Metakaolin (MK).  The constant replacement level of cement with 30% GGBS and 15% Metakaolin was followed for all the mixes.  The natural aggregate has been replaced with pumice from 10% to 50% in the increment of 10%. A total of six combinations were cast. Hardened properties of the concrete were evaluated by conducting compressive strength (100 mm x 100 mm x 100 mm cubes), split tensile strength (cylinder of size 100 mm x 200 mm). In order to enhance the strength properties, cement has been replaced with GGBS and MK at certain replacement levels. The strength properties of light weight concrete samples and the conventional concrete samples were carried out. 


Author(s):  
Vani Kulkarni

Abstract: The major factor that affects the housing delivery is high cost of materials for any conventional concrete. This has lead to find an alternative. An attempt has been made to find an alternative by using partial replacement of coarse aggregate by coconut shell aggregate and cement by fly ash. This report provides the information obtained from a literature search. And also provides laboratory experiments on Cement, Sand, Coarse aggregate and Coconut shell. This project is done using partial replacement of coarse aggregate by coconut shell aggregate and cement by fly ash.10 % of fly ash was kept constant as replacement for cement. And Coarse aggregate was replaced by 5%, 10%, 15%, and 20% of coconut shell aggregate.30 concrete cubes of 150x150x150 mm size were casted and 3 cubes were tested after 7 days of curing and 3 cubes were tested after 28 days of curing for each percentage.30 concrete Cylinders of 150x300 mm size were casted and 3 Cylinders were tested after 7 days of curing and 3 Cylinders were tested after 28 days of curing for each percentage.15 concrete Beams of 100X100X500 mm size were casted and 3 beams were tested after 28 days of curing for each percentage. Two models were done using ANSYS Software using the same failure loads from the experimental part. Keywords: Light weight concrete, coconut shell, Fly-ash, experimental.


2021 ◽  
Author(s):  
Aamer Abbas ◽  
◽  
Yaqoob Yaqoob ◽  
Ola Hussein ◽  
Ibrahim Al-Ani ◽  
...  

This study presents experimentally the bond behavior of light-weight concrete specimens with grouted reinforcing bars in comparison with conventional concrete specimens. A total of (9) pull-out specimens were studied; (3) specimens of conventional concrete, (3) specimens of light-weight concrete, and other (3) specimens of grouted light-weight concrete. Two variables are adopted in this investigation: specimen width and type of concrete (conventional concrete, light-weight concrete and grouted light-weight concrete). The study contains a discussion of the general behavior of the specimens in addition to the study of the ultimate bond capacity, maximum bond stresses and the relationship between the stress and the slip for different pull-out specimens. Results show that bond strength is highest for the largest specimen size (bond strength of grouted light-weight concrete specimen with specimen width 400 mm is higher than that of the specimen with (200 mm) width by about (13.13%)). Also, bond strength is highest for the grouted light-weight concrete specimen (bond strength of grouted light-weight concrete specimen is higher than conventional concrete specimen by (11.11%)).


2018 ◽  
Vol 7 (2.12) ◽  
pp. 420
Author(s):  
Sindhu Nachiar S ◽  
Anandh S ◽  
Jeyem Veerarajan

Generally for any construction, normal conventional concrete is used to obtain required strength as per design. In the construction industry, now a day’s many construction techniques are in practice to minimise the self weight of concrete, thereby reducing the size of structural elements. One of the most widely adopting techniques is use of light weight concrete. But use of these light weight concrete do not fulfil the strength requirement as per the design of the structure. Hence it is used only as non-load bearing structural elements in the field. In view of this, in this study the attempt has been made to introduce the air voids in conventional concrete without compromising the strength. In this work the air voids are introduced in the concrete slabs and it is tested in the laboratory to know the performance. For this purpose, the slab of the size of 600mm x 600mm x 100mm is prepared with the voids of diameters 30mm, 35mm and 40mm. The voids are introduced in the concrete slab in four different configurations (line, X, I and matrix) to prepare the cellular elements. The normal and cellular slabs are tested under single point loading and the effect of various configurations is studied at the age of 28 days. From the test results, it was found that the slab with void volume of 1.59% shows the lowest stiffness and the slab with void volume of 2.28% shows the highest stiffness.


Author(s):  
Wasiq Maqbool Peer

Abstract: Pervious concrete is a concrete containing little or no fine aggregate; it consists of coarse aggregate and cement paste. It seems pervious concrete would be a natural choice for use in structural applications in this age of ‘green building’. It consumes less raw material than normal concrete (no sand), it provides superior insulation values when used in walls, and through the direct drainage of rainwater, it helps recharge groundwater in pavement applications. Due to increase in construction and demolition activities all over the world, the waste concrete after the destruction is not used for any purpose which leads to loss of economy of the country. India is a developing country where urbanization is increasing rapidly which in turn leading to increase of drainage facilities. Pervious concrete helps to allow the water flow into the ground due to interconnected pores. Natural aggregate is becoming scarce, production and shipment is becoming more difficult. In order to overcome this problem, there is need to find a by-product, which can be used to replace the aggregate in conventional concrete mix. Keywords: Pervious Concrete, Partial Replacement, Fly Ash, Cement, Compressive Strength,


2010 ◽  
Vol 168-170 ◽  
pp. 276-280 ◽  
Author(s):  
Xun An Ning ◽  
Jing Yong Liu ◽  
Zuo Yi Yang

EPS(Expanded polystyrene)is used as light-weight.By adding fly ash and modified polymers in proper proportion aggregate, and cement is used as adhesive material, the uniformity and stability of pastes can be improved. The EPS light-weight concrete is obtained with good physical mechanical perform ance and some problems of segregated layers, weak interfacial bonding, and low density and strength etc, can be solved. The effects of water cement ratio and fly ash proportion on the mobitity of the mixture and the strength of the concrete are analyzed.


As construction in India and other developing countries are increasing, the consumption of energy and resources are also increasing in same alarming way. Due to urbanization many industries are developed and the industrial wastage is also increasing day by day which is a serious concern to the environment. Many industries produce various end products, which may be used in construction industry at various places. So we focused on some of the waste materials which can be replaced in conventional concrete, and by then cost of construction can be reduced and is economical, also damage caused to the environment can also be reduced, at the same time landfills can also be reduced. So, we focused on reducing the virgin materials in concrete like cement, fine aggregate and coarse aggregate by replacing them with some waste materials which have same properties of cement, fine aggregate and coarse aggregate. The objective of the present work is to find out the effectiveness of fly ash, quarry dust and crumb rubber by replacing them in varied percentages. Here, cement is replaced by fly ash with percentages as 30%, 40%, 50%, 60% and quarry dust as fine aggregate with percentages of 20%, 30%, 40%, 50% along with crumb rubber as coarse aggregate with percentages as 5%, 10%, 15%, 20%. The results in this study have shown a gradual reduction of compressive strength as we kept on adding the crumbed rubber. Even though the strength obtained for 5% usage of crumbed rubber was quite satisfactory.


2018 ◽  
Vol 7 (4.2) ◽  
pp. 1
Author(s):  
Pavithra A ◽  
Jerosia De Rose D

The main aim of this project is to develop a light weight concrete (LWC) by replacing the coarse aggregate with light weight expanded clay aggregate. The damage caused in LWC is less significant than conventional concrete and therefore the maintenance cost is also reduced. In order to understand the effect of light weight aggregate in concrete, conventional concrete of strength 30MPa was designed with the density of 2400 kg/m3. Then the natural coarse aggregates were replaced by clay aggregates and light weight concrete mix of density 1800 kg/m3 was designed to meet the desired strength requirement. As the density of the concrete tends to be lowered, the strength of the concrete may also tend to decrease. Hence suitable chemical and mineral admixture is to be incorporated in addition to significant water reduction to meet the strength requirement. Cement content kept constant in both the cases. The details of mechanical properties and durability properties of conventional and light weight concrete are reported in this paper. 


Sign in / Sign up

Export Citation Format

Share Document