scholarly journals Multi-stage Interconnection networks CLOS/BENES Parallel Routing Algorithms for circuit switching system

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2864-2872

This article approaches the design of parallel routing Clos and Benes switching networks in Communication Technology. In communication, the transmission of data with less traffic and low latency are the biggest challenges. The conventional packet switching circuits takes the more power and high area to overcome this problem parallel routing algorithms are proposed. Clos and Benes networks are designed for the circuit switching systems where the switching configuration will be rearranged and it’s relatively low speed. Most of the existing parallel routing algorithms are not practical those are fail to interconnects the inputs with the matched outputs with less traffic. In this article, we designed Clos and Benes network. Clos and Benes networks are the Non-blocking switching Networks. Clos Switching network provides the better results like low area and less delay when compare with the Benes Switching Network. Clos and Benes non-blocking switching circuits are designed by Verilog HDL, Synthesized and simulated by XILINX 12.1 tool

1989 ◽  
Vol 26 (04) ◽  
pp. 901-905
Author(s):  
Rahim Shamsiev

We prove existence and uniqueness of a stationary regime for a model of a circuit-switching network with infinitely many nodes.


1989 ◽  
Vol 26 (4) ◽  
pp. 901-905 ◽  
Author(s):  
Rahim Shamsiev

We prove existence and uniqueness of a stationary regime for a model of a circuit-switching network with infinitely many nodes.


2021 ◽  
Author(s):  
Karthik K ◽  
Sudarson Jena ◽  
Venu Gopal T

Abstract A Multiprocessor is a system with at least two processing units sharing access to memory. The principle goal of utilizing a multiprocessor is to process the undertakings all the while and support the system’s performance. An Interconnection Network interfaces the various handling units and enormously impacts the exhibition of the whole framework. Interconnection Networks, also known as Multi-stage Interconnection Networks, are node-to-node links in which each node may be a single processor or a group of processors. These links transfer information from one processor to the next or from the processor to the memory, allowing the task to be isolated and measured equally. Hypercube systems are a kind of system geography used to interconnect various processors with memory modules and precisely course the information. Hypercube systems comprise of 2n nodes. Any Hypercube can be thought of as a graph with nodes and edges, where a node represents a processing unit and an edge represents a connection between the processors to transmit. Degree, Speed, Node coverage, Connectivity, Diameter, Reliability, Packet loss, Network cost, and so on are some of the different system scales that can be used to measure the performance of Interconnection Networks. A portion of the variations of Hypercube Interconnection Networks include Hypercube Network, Folded Hypercube Network, Multiple Reduced Hypercube Network, Multiply Twisted Cube, Recursive Circulant, Exchanged Crossed Cube Network, Half Hypercube Network, and so forth. This work assesses the performing capability of different variations of Hypercube Interconnection Networks. A group of properties is recognized and a weight metric is structured utilizing the distinguished properties to assess the performance exhibition. Utilizing this weight metric, the performance of considered variations of Hypercube Interconnection Networks is evaluated and summed up to recognize the effective variant. A compact survey of a portion of the variations of Hypercube systems, geographies, execution measurements, and assessment of the presentation are examined in this paper. Degree and Diameter are considered to ascertain the Network cost. On the off chance that Network Cost is considered as the measurement to assess the exhibition, Multiple Reduced Hypercube stands ideal with its lower cost. Notwithstanding it, on the off chance that we think about some other properties/ scales/metrics to assess the performance, any variant other than MRH may show considerably more ideal execution. The considered properties probably won't be ideally adequate to assess the effective performance of Hypercube variations in all respects. On the off chance that a sensibly decent number of properties are utilized to assess the presentation, a proficient variation of Hypercube Interconnection Network can be distinguished for a wide scope of uses. This is the inspiration to do this research work.


2012 ◽  
Vol 16 (8) ◽  
pp. 2739-2748 ◽  
Author(s):  
W. W. Zhao ◽  
B. J. Fu ◽  
L. D. Chen

Abstract. Land use and land cover are most important in quantifying soil erosion. Based on the C-factor of the popular soil erosion model, Revised Universal Soil Loss Equation (RUSLE) and a scale-pattern-process theory in landscape ecology, we proposed a multi-scale soil loss evaluation index (SL) to evaluate the effects of land use patterns on soil erosion. We examined the advantages and shortcomings of SL for small watershed (SLsw) by comparing to the C-factor used in RUSLE. We used the Yanhe watershed located on China's Loess Plateau as a case study to demonstrate the utilities of SLsw. The SLsw calculation involves the delineations of the drainage network and sub-watershed boundaries, the calculations of soil loss horizontal distance index, the soil loss vertical distance index, slope steepness, rainfall-runoff erosivity, soil erodibility, and cover and management practice. We used several extensions within the geographic information system (GIS), and AVSWAT2000 hydrological model to derive all the required GIS layers. We compared the SLsw with the C-factor to identify spatial patterns to understand the causes for the differences. The SLsw values for the Yanhe watershed are in the range of 0.15 to 0.45, and there are 593 sub-watersheds with SLsw values that are lower than the C-factor values (LOW) and 227 sub-watersheds with SLsw values higher than the C-factor values (HIGH). The HIGH area have greater rainfall-runoff erosivity than LOW area for all land use types. The cultivated land is located on the steeper slope or is closer to the drainage network in the horizontal direction in HIGH area in comparison to LOW area. The results imply that SLsw can be used to identify the effect of land use distribution on soil loss, whereas the C-factor has less power to do it. Both HIGH and LOW areas have similar soil erodibility values for all land use types. The average vertical distances of forest land and sparse forest land to the drainage network are shorter in LOW area than that in HIGH area. Other land use types have shorter average vertical distances in HIGH area than that LOW area. SLsw has advantages over C-factor in its ability to specify the subwatersheds that require the land use patterns optimization by adjusting the locations of land uses to minimize soil loss.


2002 ◽  
Vol 03 (01n02) ◽  
pp. 49-65 ◽  
Author(s):  
NADER F. MIR

A thorough routing analysis of a switching network called the spherical switching network for high-speed applications is presented in this paper. The spherical switching network has a cyclic, regular, and highly expandable structure with a simple self-routing scheme. The network is constructed with fixed-size switch elements regardless of the size of the network. Each switch element consists of a carefully-selected sized 9 input/output crossbar and a local controller. One of the nine pairs of links is external and carries the external traffic, and the other eight pairs are internal. The contention resolution in each switch element is based on deflection of losing packets and incremental priority of packets. The switch elements do not utilize any buffering within the network. The analysis shows that this network clearly outperforms typical interconnection networks currently being deployed in practical switches and routers such as Banyan network. In order to keep the number of deflections low, each incoming external link is connected to a buffer with flow control capabilities. Due to the special arrangement of interconnections in the network, a much larger number of shortest paths between each pair of source/destination exists. The related analysis for finding the number of hops and shortest paths appear in this paper.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2858-2863

The main goal of this article is to implement an effective Non-Blocking Benes switching Network. Benes Switching Network is designed with the uncomplicated switch modules & it’s have so many advantages, small latency, less traffic and it’s required number of switch modules. Clos and Benes networks are play a key role in the class of multistage interconnection network because of their extensibility and mortality. Benes network provides a low latency when compare with the other networks. 8x8 Benes non blocking switching network is designed and synthesized with the using of Xilinx tool 12.1.


2021 ◽  
Vol 105 ◽  
pp. 331-338
Author(s):  
Fu Xing Qin ◽  
Li Zhang ◽  
Zhong Wang

With the rapid development of communication technology, modern communication technology has been widely penetrated into modern national defense, science and technology, people's life and other fields, and has become a means to provide high-quality and seamless information communication between people and machines. With the rapid development of computer technology and the Internet, the traditional program-controlled switching technology has come to an end, and the soft-switch network based on IP technology and packet switching has gradually replaced the program-controlled switching network based on circuit switching and become the mainstream of today's communication network world. The rapid development of VOIP telephony reduces the cost of domestic and international long-distance telephony, benefiting consumers. Digital mobile communication expands channel capacity, improves service quality and promotes the rapid development of this industry. Based on the secondary development of the open source FreeSWITCH software, this paper develops a VOIP voice system based on IP technology to meet different user needs intelligently [1].


2019 ◽  
Vol 08 (02) ◽  
pp. 85-93
Author(s):  
Tianqi Wang ◽  
Jie Huang

The leader-following consensus problem of a group of uncertain multiple rigid body systems subject to static networks has been solved by a distributed adaptive control law utilizing the distributed observer for the leader system. In this paper, we extend this result to jointly connected switching networks. This extension needs to overcome the discontinuity of some variables caused by the switching network. Additionally, we remove the assumption that every follower knows the system matrix of the leader system by employing an adaptive distributed observer for the leader system.


Sign in / Sign up

Export Citation Format

Share Document