scholarly journals Psychological Stress Prediction on Social Media using Convolutional Neural Network

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3464-3468

Psychological stress which is a mental illness also causes physical problems to the human. Nowadays social media plays an important role in the world for communication to share their thoughts with their friends and family. The social media analysis is the process of detecting and predicting the user's thoughts and opinions which also one of the important perspective in the developing business environment. The overwhelming stress and long term stress sometimes lead to suicidal ideation. By analyzing the social media content to predict the overwhelming stress state of the users in the earlier stage will reduce the psychological stress and suicidal rate too. In this paper, we address the problem of stress prediction by using social media. The machine learning and deep learning methods to perform the classification of stress analysis. Here both image and text- tweet data are used and the images are processed with the Optical Character Recognition and the text data are processed by using the Natural Language Processing and Convolutional Neural Network for classifying the tweet content of the user as stressed or non-stressed. Furthermore, with the advancement of the machine learning and deep learning method of classification gives a better result in terms of performance and accuracy of the prediction.

Author(s):  
Gauri Jain ◽  
Manisha Sharma ◽  
Basant Agarwal

This article describes how spam detection in the social media text is becoming increasing important because of the exponential increase in the spam volume over the network. It is challenging, especially in case of text within the limited number of characters. Effective spam detection requires more number of efficient features to be learned. In the current article, the use of a deep learning technology known as a convolutional neural network (CNN) is proposed for spam detection with an added semantic layer on the top of it. The resultant model is known as a semantic convolutional neural network (SCNN). A semantic layer is composed of training the random word vectors with the help of Word2vec to get the semantically enriched word embedding. WordNet and ConceptNet are used to find the word similar to a given word, in case it is missing in the word2vec. The architecture is evaluated on two corpora: SMS Spam dataset (UCI repository) and Twitter dataset (Tweets scrapped from public live tweets). The authors' approach outperforms the-state-of-the-art results with 98.65% accuracy on SMS spam dataset and 94.40% accuracy on Twitter dataset.


2019 ◽  
Vol 18 (05) ◽  
pp. 1469-1499 ◽  
Author(s):  
Paola Zola ◽  
Paulo Cortez ◽  
Costantino Ragno ◽  
Eugenio Brentari

Due to the expansion of Internet and Web 2.0 phenomenon, there is a growing interest in sentiment analysis of freely opinionated text. In this paper, we propose a novel cross-source cross-domain sentiment classification, in which cross-domain-labeled Web sources (Amazon and Tripadvisor) are used to train supervised learning models (including two deep learning algorithms) that are tested on typically nonlabeled social media reviews (Facebook and Twitter). We explored a three-step methodology, in which distinct balanced training, text preprocessing and machine learning methods were tested, using two languages: English and Italian. The best results were achieved using undersampling training and a Convolutional Neural Network. Interesting cross-source classification performances were achieved, in particular when using Amazon and Tripadvisor reviews to train a model that is tested on Facebook data for both English and Italian.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


Author(s):  
Gauri Jain ◽  
Manisha Sharma ◽  
Basant Agarwal

This article describes how spam detection in the social media text is becoming increasing important because of the exponential increase in the spam volume over the network. It is challenging, especially in case of text within the limited number of characters. Effective spam detection requires more number of efficient features to be learned. In the current article, the use of a deep learning technology known as a convolutional neural network (CNN) is proposed for spam detection with an added semantic layer on the top of it. The resultant model is known as a semantic convolutional neural network (SCNN). A semantic layer is composed of training the random word vectors with the help of Word2vec to get the semantically enriched word embedding. WordNet and ConceptNet are used to find the word similar to a given word, in case it is missing in the word2vec. The architecture is evaluated on two corpora: SMS Spam dataset (UCI repository) and Twitter dataset (Tweets scrapped from public live tweets). The authors' approach outperforms the-state-of-the-art results with 98.65% accuracy on SMS spam dataset and 94.40% accuracy on Twitter dataset.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


Jurnal INFORM ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 61-64
Author(s):  
Mohammad Zoqi Sarwani ◽  
Dian Ahkam Sani

The Internet creates a new space where people can interact and communicate efficiently. Social media is one type of media used to interact on the internet. Facebook and Twitter are one of the social media. Many people are not aware of bringing their personal life into the public. So that unconsciously provides information about his personality. Big Five personality is one type of personality assessment method and is used as a reference in this study. The data used is the social media status from both Facebook and Twitter. Status has been taken from 50 social media users. Each user is taken as a text status. The results of tests performed using the Probabilistic Neural Network algorithm obtained an average accuracy score of 86.99% during the training process and 83.66% at the time of testing with a total of 30 training data and 20 test data.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


2021 ◽  
Vol 5 (1) ◽  
pp. 21-30
Author(s):  
Rachmat Rasyid ◽  
Abdul Ibrahim

One of the wealth of the Indonesian nation is the many types of ornamental plants. Ornamental plants, for example, the Aglaonema flower, which is much favored by hobbyists of ornamental plants, from homemakers, is a problem to distinguish between types of aglaonema ornamental plants with other ornamental plants. So the authors try to research with the latest technology using a deep learning convolutional neural network method. It is for calcifying aglaonema interest. This research is based on having fascinating leaves and colors. With the study results using the CNN method, the products of aglaonema flowers of Adelia, Legacy, Widuri, RedKochin, Tiara with moderate accuracy value are 56%. In contrast, the aglaonema type Sumatra, RedRuby, has the most accuracy a high of 61%.


Author(s):  
Prof. Manisha Sachin Dabade, Et. al.

In today’s world, social media is viral and easily accessible. The Social media sites like Twitter, Facebook, Tumblr, etc. are a primary and valuable source of information.Twitter is a micro-blogging platform, and it provides an enormous amount of data. Such type of information can use for different sentiment analysis applications such as reviews, predictions, elections, marketing, etc. It is one of the most popular sites where peoples write tweets, retweets, and interact daily. Monitoring and analyzing these tweets give valuable feedback to users. Due to this data's large size, sentiment analysis is using to analyze this data without going through millions of tweets manually. Any user writes their reviews about different products, topics, or events on Twitter, called tweets and retweets. People also use emojis such as happy, sad, and neutral in expressing their emotions, so these sites contain expansive volumes of unprocessed data called raw data. The main goal of this research is to recognize the algorithms by using Machine Learning Classifiers. The study intends to categorize Fine-grain sentiments within Tweets of Vaccination (89974 tweets) through machine learning and a deep learning approach. The study takes consideration of both labeled and unlabeled data. It also detects emojis from tweets using machine learning libraries like Textblob, Vadar, Fast text, Flair, Genism, spaCy, and NLTK.


Sign in / Sign up

Export Citation Format

Share Document