scholarly journals Confidentiality Protecting Hierarchical Concealed Data Aggregation for Wireless Sensor Network using Privacy Homomorphism

2019 ◽  
Vol 8 (2) ◽  
pp. 3366-3371

A Wireless Sensor Network is a set of sensor nodes that are integrated with a physical environment. This tiny sensor node capable of sensing physical phenomena and it can process the sense data. Sensor nodes radio range is short so they transfer data in a multihop manner to form network which will send network activities to base station. Data transmission consumes much more energy than computation. So to overcome this problem data aggregation technique can be useful. This approach reduces energy consumption by avoiding repeated data. Security in wireless sensor network is also one of the important issues. Some properties of a WSN make it more harmed by certain types of attackers, compared to traditional wired network. Furthermore, constrained devices create their own problems for wireless sensor network. As sensor node is powered by batteries and node required lot of energy to perform some complex computation. So it is important to prevent every node in computation process which will save energy to gain longer network life. The focus of this work is provides confidentiality protecting hierarchical concealed data aggregation for WSN using privacy homomorphism. End to End Homomorphic Paillier cryptoscheme is used to achieve proposed approach.

Author(s):  
Monjul Saikia

The wireless sensor network is a collection of sensor nodes that operate collectively to gather sensitive data from a target area. In the process of data collection the location of sensor nodes from where data is originated matters for taking any decision at the base station. Location i.e. the coordinates of a sensor node need to be shared among other nodes in many circumstances such as in key distribution phase, during routing of packets and many more. Secrecy of the location of every sensor node is important in any such cases. Therefore, there must be a location sharing scheme that facilitates the sharing of location among sensor nodes securely. In this paper, we have proposed a novel secure and robust mechanism for location sharing scheme using 2-threshold secret sharing scheme. The implementation process of the proposed model is shown here along with results and analysis.


Author(s):  
Ashim Pokharel ◽  
Ethiopia Nigussie

Due to limited energy resources, different design strategies have been proposed in order to achieve better energy efficiency in wireless sensor networks, and organizing sensor nodes into clusters and data aggregation are among such solutions. In this work, secure communication protocol is added to clustered wireless sensor network. Security is a very important requirement that keeps the overall system usable and reliable by protecting the information in the network from attackers. The proposed and implemented AES block cipher provides confidentiality to the communication between nodes and base station. The energy efficiency of LEACH clustered network and with added security is analyzed in detail. In LEACH clustering along with the implemented data aggregation technique 48% energy has been saved compared to not clustered and no aggregation network. The energy consumption overhead of the AES-based security is 9.14%. The implementation is done in Contiki and the simulation is carried out in Cooja emulator using sky motes.


Electrician ◽  
2019 ◽  
Vol 13 (3) ◽  
pp. 70-75
Author(s):  
Denny Nugroho ◽  
Rudi Uswarman

Intisari — Bencana alam seperti gerakan tanah atau longsor dapat terjadi pada berbagai skala dan kecepatan. Untuk meminimalkan kerugian akibat bencana tersebut maka dilakukan usaha mengenal tanda-tanda yang mengawali gerakan tanah, atau disebut sebagai mitigasi. Penelitian ini dilakukan untuk merancang wireless sensor network yang mampu mengidentifikasi bencana longsor. Node sensor terdiri dari: sensor getaran, sensor kemiringan lahan, sensor pergeseran lahan, kontroler, dan modul transmisi data. Node-node sensor ini ditanam pada daerah yang rawan longsor dan saling berkomunikasi antara node satu dengan lainnya. Data-data berupa getaran, kemiringan lahan, dan status selalu ditransmisikan ke base station sistem peringatan dini longsor secara realtime. Ketika bencana longsor akan segera terjadi node sensor diharapkan mampu mendeteksi dan mengaktifkan alarm yang ada pada node sensor serta mengirimkan tanda bahaya ke base station. Kata Kunci — longsor, wireless sensor network, node sensor, mikrokontroler   Abstrak — Natural disasters such as land movements or landslides can occur at various scales and speeds. To minimize damages due to the disaster, an effort is made to recognize the signs that initiate soil movements or referred to as mitigation. This research was conducted to design a wireless sensor network that can identify landslides. Sensor nodes consist of vibration sensor, slope sensor, land shift sensor, controller, and data transmission module. These sensor nodes are planted in areas inclined to landslides and communicate with each other between nodes. The data vibration, the slope of the land, and status are always transmitted to the base station of the landslide early warning system in real time. When an landslide will occur soon the sensor node is expected to be able to detect and activate the alarm on the sensor node and send an signal to the base station. Keyword — landslides, wireless sensor networks, sensor nodes, microcontrollers


Author(s):  
P. MANJUNATHA ◽  
A. K. VERMA ◽  
A. SRIVIDYA

Wireless sensor network (WSN) consists of a large number of sensor nodes which are able to sense their environment and communicate with each other using wireless interface. However these sensor nodes are constrained in energy capacity. The lifetimes of sensor node and sensor network mainly depends upon these energy resources. To increase the life time of sensor network, many approaches have been proposed to optimize the energy usage. All these proposed protocols mainly use minimum hop or minimum energy path. Continuously using the shortest path will deplete energy of the nodes at a much faster rate and causes network partition. This paper proposes an energy efficient routing protocol to extend the network lifetime for delay constrained network. Each sensor node selects the optimized path for forwarding packets to the base station based on routing metrics. Proposed studies and simulation results shows that the protocol put forward in the paper can achieve higher network lifetime by striking a balance between the delay and power consumption in comparison to other routing protocols.


2018 ◽  
Vol 14 (8) ◽  
pp. 155014771879584 ◽  
Author(s):  
Danyang Qin ◽  
Yan Zhang ◽  
Jingya Ma ◽  
Ping Ji ◽  
Pan Feng

Due to the advantages of large-scale, data-centric and wide application, wireless sensor networks have been widely used in nowadays society. From the physical layer to the application layer, the multiply increasing information makes the data aggregation technology particularly important for wireless sensor network. Data aggregation technology can extract useful information from the network and reduce the network load, but will increase the network delay. The non-exchangeable feature of the battery of sensor nodes makes the researches on the battery power saving and lifetime extension be carried out extensively. Aiming at the delay problem caused by sleeping mechanism used for energy saving, a Distributed Collision-Free Data Aggregation Scheme is proposed in this article to make the network aggregate data without conflicts during the working states periodically changing so as to save the limited energy and reduce the network delay at the same time. Simulation results verify the better aggregating performance of Distributed Collision-Free Data Aggregation Scheme than other traditional data aggregation mechanisms.


A Wireless Sensor Network (WSN) is a component with sensor nodes that continuously observes environmental circumstances. Sensor nodes accomplish different key operations like sensing temperature and distance. It has been used in many applications like computing, signal processing, and network selfconfiguration to expand network coverage and build up its scalability. The Unit of all these sensors that exhibit sensing and transmitting information will offer more information than those offered by autonomously operating sensors. Usually, the transmitting task is somewhat critical as there is a huge amount of data and sensors devices are restricted. Being the limited number of sensor devices the network is exposed to different types of attacks. The Traditional security mechanisms are not suitable for WSN as they are generally heavy and having limited number of nodes and also these mechanisms will not eliminate the risk of other attacks. WSN are most useful in different crucial domains such as health care, environment, industry, and security, military. For example, in a military operation, a wireless sensor network monitors various activities. If an event is detected, these sensor nodes sense that and report the data to the primary (base) station (called sink) by making communication with other nodes. To collect data from WSN base Stations are commonly used. Base stations have more resources (e.g. computation power and energy) compared to normal sensor nodes which include more or less such limitations. Aggregation points will gather the data from neighboring sensor nodes to combine the data and forward to master (base) stations, where the data will be further forwarded or processed to a processing center. In this manner, the energy can be preserved in WSN and the lifetime of network is expanded.


Due to the recent advancements in the fields of Micro Electromechanical Sensors (MEMS), communication, and operating systems, wireless remote monitoring methods became easy to build and low cost option compared to the conventional methods such as wired cameras and vehicle patrols. Pipeline Monitoring Systems (PMS) benefit the most of such wireless remote monitoring since each pipeline would span for long distances up to hundreds of kilometers. However, precise monitoring requires moving large amounts of data between sensor nodes and base station for processing which require high bandwidth communication protocol. To overcome this problem, In-Situ processing can be practiced by processing the collected data locally at each node instead of the base station. This Paper presents the design and implementation of In-situ pipeline monitoring system for locating damaging activities based on wireless sensor network. The system built upon a WSN of several nodes. Each node contains high computational 1.2GHz Quad-Core ARM Cortex-A53 (64Bit) processor for In-Situ data processing and equipped in 3-axis accelerometer. The proposed system was tested on pipelines in Al-Mussaib gas turbine power plant. During test knocking events are applied at several distances relative to the nodes locations. Data collected at each node are filtered and processed locally in real time in each two adjacent nodes. The results of the estimation is then sent to the supervisor at base-station for display. The results show the proposed system ability to estimate the location of knocking event.


Wireless sensor network plays prominently in various applications of the emerging advanced wireless technology such as smart homes, Commercial, defence sector and modern agriculture for effective communication. There are many issues and challenges involved during the communication process. Energy conservation is the major challenging matter and fascinates issue among the researchers. The reason for that, Wireless sensor network has ‘n’ number of sensor nodes to identify and recognize the data and send that data to the base station or sink through either directly or intermediate node. These nodes with poor energy create intricacy on the data rate or flow and substantially affect the lifespan of a wireless sensor network. To decrease energy utilization the sensor node has to neglect unnecessary received data from the neighbouring nodes prior to send the optimum data to the sink or another device. When a specific target is held in a particular sector, it can be identified by many sensors. To rectify such process this paper present Data agglomeration technique is one of the persuasive techniques in the neglecting unnecessary data and of improves energy efficiency and also it increases the lifetime of WSNs. The efficacious data aggregation paradigm can also decrease traffic in the network. This paper discussed various data agglomeration technique for efficient energy in WSN.


Author(s):  
Ortega-Corral César ◽  
B. Ricardo Eaton-González ◽  
Florencio López Cruz ◽  
Laura Rocío, Díaz-Santana Rocha

We present a wireless system applied to precision agriculture, made up of sensor nodes that measure soil moisture at different depths, applied to vine crops where drip irrigation is applied. The intention is to prepare a system for scaling, and to create a Wireless Sensor Network (WSN) that communicates by radio frequency with a base station (ET), so that the gathered data is stored locally and can be sent out an Internet gateway.


2013 ◽  
Vol 347-350 ◽  
pp. 1920-1923
Author(s):  
Yu Jia Sun ◽  
Xiao Ming Wang ◽  
Fang Xiu Jia ◽  
Ji Yan Yu

The characteristics and the design factors of wireless sensor network node are talked in this article. According to the design factors of wireless sensor network, this article will mainly point out the design of wireless sensor nodes based a Cortex-M3 Microcontroller STM32F103RE chip. And the wireless communication module is designed with a CC2430 chip. Our wireless sensor node has good performance in our test.


Sign in / Sign up

Export Citation Format

Share Document