scholarly journals Effect of Nano Iron Oxide on Strength and Durability Characteristics of High Volume Fly Ash Concrete for Pavement Construction

2019 ◽  
Vol 8 (2) ◽  
pp. 4365-4373

Cement is the principal component of cement concrete used for construction of rigid pavements and is produced by an energy intensive process. Large scale production and its subsequent utilization detrimentally contributes towards global warming. In order to cater for sustainable development, there is a need to utilize waste materials having cementitious properties as a partial substitute for cement. Fly ash is one of such waste which is being extensively used for the production of cement concrete. Concrete produced by utilizing fly ash more than fifty percent of cement is termed as high volume fly ash concrete (HVFAC). Although HVFAC facilitates utilization of large volume of fly ash, it however has the disadvantage of delayed gain in strength which limits its usage as pavement quality concrete (PQC). Contemporary literatures show the usage of various types of nanomaterials to overcome this disadvantage. The present study was carried out to investigate the influence of nano iron oxide on strength and durability properties of HVFAC. The HVFAC used in the study was prepared by replacement of fifty five percent ordinary Portland cement with F-type fly ash obtained from thermal power plant. Nano iron oxide was utilized in different percentages to improve the strength and durability characteristics of HVFAC. The strength properties of the concrete was evaluated by flexural, compressive and split tensile strength tests, whereas the durability characteristics were evaluated by density, permeability, sorptivity, ultrasonic pulse velocity and rapid chloride penetration tests. The tests were carried out at 28, 56 and 90 days age of concrete. The test result showed that HVFAC modified with 0.75% nano iron oxide by weight gave the optimal strength and durability results which were comparable with that of normal cement concrete used for construction of rigid pavements.

2019 ◽  
Vol 5 (6) ◽  
pp. 1341-1352 ◽  
Author(s):  
Bimal Kumar ◽  
Sanjeev Sinha ◽  
Hillol Chakravarty

Increasing demands of cement concrete for construction of rigid pavements motivates for the utilization of other sustainable waste cementitious materials. High volume fly-ash concrete (HVFAC) which is composed of more than 50% fly-ash fulfils the aspiration of large volume of fly-ash which are produced world over. The disadvantage which the HVFAC has is its delayed gain of strength. Contemporary literature identifies nano-silica as the material which when added in small percentages in HVFAC has the potential to improve its strength and durability characteristics at an early age. The objective of the study is to investigate the strength and durability characteristics of HVFAC modified with addition of different percentages of nano-silica so that it can be used for construction of rigid pavements. The methodology of the study involves mix proportioning of HVFAC and introducing nano-silica powder in aqueous medium after mixing it thoroughly at 2500 rpm. Various tests related to strength and durability was carried out after 28, 56 and 90 days age of concrete. The tests related to strength namely flexural strength, compressive strength and split tensile strength tests were carried out. Durability characteristics were evaluated by permeability, sorptivity and rapid chloride penetration tests and were confirmed by density and ultrasonic pulse velocity test.  The test results show that the utilization of 2% nano-silica in HVFAC enhances the strength and durability characteristics to a level that are comparable to that of normal concrete after 28 days and thus, can be sustainably utilized for rigid pavement construction.


Concrete is most frequently used composite material. Concrete is homogeneous mix of fine aggregate, Coarse aggregate and binding medium of concrete paste .Due to `high demand of cement Co2 emission is very high, It leads to global warming. So in this project high volume fly ash concrete was incorporated. Fly ash is the waste material obtained from thermal power plant. In this paper we investigated about high volume fly ash in different percentage of replacement 55, 60, 75 percentage. Layered pavement is incorporated with Steel fiber in a different aspect ratio (15, 30, 40).layered pavement will give good thermal expansive properties. By varying fly ash content and Steel fibers Aspect ratio of different mixes were arrived hardened properties of these nine mixes were arrived such as Compression test, Split tensile test and Flexural test.


This study focuses on the influence of the durable properties of Conventional concrete and High volume fly ash concrete. Fly ash is replaced in various percentages as 0%,40%,50%,55% and 60% by the weight of ordinary Portland cement in addition to that polypropylene fibre of 0.2% is added for improving the strength and Durability of concrete. Water absorption test, chloride resistance test, sulphateresistance test and Rapid Chloride Penetration test (RCPT) were evaluated. The test results show that the addition of high volume fly ash and polypropylene fibre improves the flexural strength and Durability of concrete.Fly Ash replacement of 55% by the weight of cement is considered as the optimum replacement level


2021 ◽  
Vol 64 (1) ◽  
pp. 19-43
Author(s):  
Jelena Dragaš ◽  
Snežana Marinković ◽  
Vlastimir Radonjanin

The analysis of available experimental results of high-volume fly ash concrete mechanical properties showed that extensive amount of research had been done so far. However, a comprehensive analysis of basic high-volume fly ash concrete mechanical properties was not found in the literature. Having that in mind, the database of 440 high-volume fly ash concrete and 151 cement concrete mixtures collected from literature was made. The application of European Code EN 1992-1-1 prediction models for cement concrete mechanical properties, as well as existing proposals for high-volume fly ash concrete properties, were statistically evaluated on the results from the database. The analysis showed that the prediction models defined in EN 1992-1-1 for compressive strength, tensile strength and for modulus of elasticity can be used for high-volume fly ash concrete, in the given form or with modifications proposed in literature, with similar accuracy and variation of results as for cement concrete. Own model for fly ash efficiency prediction was developed.


2017 ◽  
Vol 744 ◽  
pp. 87-91
Author(s):  
Xiao Jie Geng ◽  
Fang Fang Hou

The effect of different curing time on internal structure of high-volume fly ash concrete with HCSA expansive agent is studied, and the analysis of that compactness and endurance of concrete could be improved by HCSA expansive agent which could fundamentally compact the internal structure of high-volume fly ash concrete is performed. The result shows that curing is beneficial to generation of ettringite and could accelerate hydration of concrete with expansive agent; the compactness of cured concrete with HCSA is better than which was not cured. The internal porosity was filled by expansive agent after hydration expansion, and concrete was more dense, leading to that the strength and durability of concrete improved.


2012 ◽  
Vol 512-515 ◽  
pp. 2976-2981 ◽  
Author(s):  
Jeffery S. Volz

With worldwide production of fly ash approaching 800 million tonnes annually, increasing the amount of fly ash used in concrete will remove more material from the solid waste stream and reduce the amount ending up in landfills. However, most specifications limit the amount of cement replacement with fly ash to less than 25 or 30%. Concrete with fly ash replacement levels of at least 50% – referred to as high-volume fly ash (HVFA) concrete – offers a potential green solution. The following study investigated the structural performance of HVFA concrete compared to conventional portland-cement concrete. Specifically, the research examined both the bond strength of reinforcing steel in HVFA concrete as well as the shear behavior of HVFA reinforced concrete. The results indicate that HVFA concrete performs as well or better than conventional portland-cement concrete.


2008 ◽  
Vol 9 (2) ◽  
pp. 101-108 ◽  
Author(s):  
G. Baert ◽  
A.-M. Poppe ◽  
N. De Belie

Sign in / Sign up

Export Citation Format

Share Document