Compressive strength and durability of high-volume fly ash concrete reinforced with calcium carbonate nanoparticles

Author(s):  
F.U.A. Shaikh ◽  
S.W.M. Supit
2019 ◽  
Vol 8 (2) ◽  
pp. 4365-4373

Cement is the principal component of cement concrete used for construction of rigid pavements and is produced by an energy intensive process. Large scale production and its subsequent utilization detrimentally contributes towards global warming. In order to cater for sustainable development, there is a need to utilize waste materials having cementitious properties as a partial substitute for cement. Fly ash is one of such waste which is being extensively used for the production of cement concrete. Concrete produced by utilizing fly ash more than fifty percent of cement is termed as high volume fly ash concrete (HVFAC). Although HVFAC facilitates utilization of large volume of fly ash, it however has the disadvantage of delayed gain in strength which limits its usage as pavement quality concrete (PQC). Contemporary literatures show the usage of various types of nanomaterials to overcome this disadvantage. The present study was carried out to investigate the influence of nano iron oxide on strength and durability properties of HVFAC. The HVFAC used in the study was prepared by replacement of fifty five percent ordinary Portland cement with F-type fly ash obtained from thermal power plant. Nano iron oxide was utilized in different percentages to improve the strength and durability characteristics of HVFAC. The strength properties of the concrete was evaluated by flexural, compressive and split tensile strength tests, whereas the durability characteristics were evaluated by density, permeability, sorptivity, ultrasonic pulse velocity and rapid chloride penetration tests. The tests were carried out at 28, 56 and 90 days age of concrete. The test result showed that HVFAC modified with 0.75% nano iron oxide by weight gave the optimal strength and durability results which were comparable with that of normal cement concrete used for construction of rigid pavements.


This study focuses on the influence of the durable properties of Conventional concrete and High volume fly ash concrete. Fly ash is replaced in various percentages as 0%,40%,50%,55% and 60% by the weight of ordinary Portland cement in addition to that polypropylene fibre of 0.2% is added for improving the strength and Durability of concrete. Water absorption test, chloride resistance test, sulphateresistance test and Rapid Chloride Penetration test (RCPT) were evaluated. The test results show that the addition of high volume fly ash and polypropylene fibre improves the flexural strength and Durability of concrete.Fly Ash replacement of 55% by the weight of cement is considered as the optimum replacement level


2017 ◽  
Vol 744 ◽  
pp. 87-91
Author(s):  
Xiao Jie Geng ◽  
Fang Fang Hou

The effect of different curing time on internal structure of high-volume fly ash concrete with HCSA expansive agent is studied, and the analysis of that compactness and endurance of concrete could be improved by HCSA expansive agent which could fundamentally compact the internal structure of high-volume fly ash concrete is performed. The result shows that curing is beneficial to generation of ettringite and could accelerate hydration of concrete with expansive agent; the compactness of cured concrete with HCSA is better than which was not cured. The internal porosity was filled by expansive agent after hydration expansion, and concrete was more dense, leading to that the strength and durability of concrete improved.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 243 ◽  
Author(s):  
Mohamed H. Mussa ◽  
Ahmed M. Abdulhadi ◽  
Imad Shakir Abbood ◽  
Azrul A. Mutalib ◽  
Zaher Mundher Yaseen

The dynamic behaviour of high-volume fly ash concrete with nano-silica (HVFANS) and polypropylene fibres at curing ages of 7 to 90 days was determined by using a split Hopkinson pressure bar (SHPB) machine. At each curing age, the concrete samples were laboratory tested at different temperatures conditions under strain rates reached up to 101.42 s−1. At room temperature, the results indicated that the dynamic compressive strength of plain concrete (PC) was slightly higher than HVFANS concrete at early curing ages of 7 and 28 days, however, a considerable improvement in the strength of HVFANS concrete was noted at a curing age of 90 days and recorded greater values than PC owing to the increase of fly ash reactivity. At elevated temperatures, the HVFANS concrete revealed a superior behaviour than PC even at early ages in terms of dynamic compressive strength, critical strain, damage and toughness due to increase of nano-silica (NS) activity during the heating process. Furthermore, equations were suggested to estimate the dynamic increase factor (DIF) of both concretes under the investigated factors.


2011 ◽  
Vol 261-263 ◽  
pp. 333-337
Author(s):  
Juan Hong Liu ◽  
Fang Fang Hou ◽  
Shao Min Song ◽  
Bo Ya Jia

In this article, the effects of compressive strength and carbonation depth of HCSA mixing amount on high volume fly ash concrete have been investigated. Besides, the effects of compressive strength and carbonation depth of the fly ash amount on HCSA expansive concrete have been also analyzed. The results show that proper HCSA mixing amount can improve the compressive strength and anti-carbonation resistance. On the condition of 55% mixing amount of fly ash and 6% HCSA, the compressive strength for 28 days enhanced 8MPa, the carbonation depth decreased by 0.7mm, at the age of 70, the strength increased by 12MPa and the depth reduced 1.7mm; when the mixing amount of HCSA reaches 10%, the internal structure of concrete would be destroyed; In the case of 6% HCSA amount, the compressive strength and anti-carbonation resistance decreases with the increase of fly ash mixing amount. While comparing to the concrete without HCSA, the compressive strength and anti-carbonation resistance increase obviously.


2019 ◽  
Vol 5 (6) ◽  
pp. 1341-1352 ◽  
Author(s):  
Bimal Kumar ◽  
Sanjeev Sinha ◽  
Hillol Chakravarty

Increasing demands of cement concrete for construction of rigid pavements motivates for the utilization of other sustainable waste cementitious materials. High volume fly-ash concrete (HVFAC) which is composed of more than 50% fly-ash fulfils the aspiration of large volume of fly-ash which are produced world over. The disadvantage which the HVFAC has is its delayed gain of strength. Contemporary literature identifies nano-silica as the material which when added in small percentages in HVFAC has the potential to improve its strength and durability characteristics at an early age. The objective of the study is to investigate the strength and durability characteristics of HVFAC modified with addition of different percentages of nano-silica so that it can be used for construction of rigid pavements. The methodology of the study involves mix proportioning of HVFAC and introducing nano-silica powder in aqueous medium after mixing it thoroughly at 2500 rpm. Various tests related to strength and durability was carried out after 28, 56 and 90 days age of concrete. The tests related to strength namely flexural strength, compressive strength and split tensile strength tests were carried out. Durability characteristics were evaluated by permeability, sorptivity and rapid chloride penetration tests and were confirmed by density and ultrasonic pulse velocity test.  The test results show that the utilization of 2% nano-silica in HVFAC enhances the strength and durability characteristics to a level that are comparable to that of normal concrete after 28 days and thus, can be sustainably utilized for rigid pavement construction.


2018 ◽  
Vol 207 ◽  
pp. 01004
Author(s):  
Mu Li

Fly ash is a by-product of the combustion of the coal-fired electric power stations, and disposal of fly ash has been one of the environmental challenges. Much of the studies have been focused on the mechanical property of fly ash concrete. It is no doubt that the use of high-volume fly ash as a partial replacement of cement is also one of the effect way to utilize fly ash. It is known that the compressive strength of fly ash concrete is lower than that of ordinary concrete at early age, especially for high-volume fly ash concrete. It is urgent for engineers to consider the compressive strength of high-volume fly ash concrete at different curing age. In this review, the compressive strength of high-volume fly ash concrete in various literature was reported and then analyzed. Furthermore, the proposal of the utilization of high-volume fly ash concrete is provided.


2017 ◽  
Vol 79 (7-2) ◽  
Author(s):  
Antoni Antoni ◽  
Alvin Krisnanta Widianto ◽  
Jerry Lakshmana Wiranegara ◽  
Djwantoro Hardjito

Fly ash is a by-product of coal burning and is widely used as a substitute for cement material. The advantages of using fly ash in concrete include the improvement of workability and reduction of bleeding and segregation. The problem often encountered when using fly ash is the uncertainty of the fly ash quality. The quality is influenced by the coal origin, burning technique, mineral content, and capturing method. In this study, the consistency of fly ash from one power plant source was investigated for making a high-volume fly ash (HVFA) mortar. Variations in fly ash can be detected by applying rapid indicators as suggested in this paper; i.e., the pH of the fly ash in aqueous solution, the percentage of fly ash particles passing sieve #325 and the superplasticizer demand for the targeted slump flow. The fly ash replacement ratio was varied from 10–60% of cement, by mass. The results showed a large variation in the chemical content of the fly ash as shown by variation in pH, whereas only slight variation in the physical properties of the fly ash, i.e. particle size and shape. Superplasticizer demand for the same flow diameter was reduced with the increase of fly ash content, whereas the optimum fly ash replacement ratio for maximum strength varied among fly ash from different sampling periods. The compressive strength could reach that of control specimens at a replacement ratio of 20–30%, and mortar compressive strength of 42 MPa was still achievable at a replacement ratio of 50%.


Sign in / Sign up

Export Citation Format

Share Document