scholarly journals Face Recognition with CNN and Inception Deep Learning Models

2019 ◽  
Vol 8 (3) ◽  
pp. 1932-1938

In this work, deep learning methods are used to classify the facial images. ORL Database is used for the purpose of training the models and for testing. Three kinds of models are developed and their performances are measured. Convolutional Neural Networks (CNN), Convolutional Neural Network Based Inception Model with single training image per class (CNN-INC) and Convolutional Neural Network Based Inception Model with several training images per class (CNN-INC-MEAN) are developed. The ORL database has ten facial images for each person. Five images are used for training purpose and remaining 5 images are used for testing. The five images for the training are chosen randomly so that two sets of training and testing data is generated. The models are trained and tested on the two sets that are drawn from the same population. The results are presented for accuracy of face recognition

2020 ◽  
Author(s):  
Albahli Saleh ◽  
Ali Alkhalifah

BACKGROUND To diagnose cardiothoracic diseases, a chest x-ray (CXR) is examined by a radiologist. As more people get affected, doctors are becoming scarce especially in developing countries. However, with the advent of image processing tools, the task of diagnosing these cardiothoracic diseases has seen great progress. A lot of researchers have put in work to see how the problems associated with medical images can be mitigated by using neural networks. OBJECTIVE Previous works used state-of-the-art techniques and got effective results with one or two cardiothoracic diseases but could lead to misclassification. In our work, we adopted GANs to synthesize the chest radiograph (CXR) to augment the training set on multiple cardiothoracic diseases to efficiently diagnose the chest diseases in different classes as shown in Figure 1. In this regard, our major contributions are classifying various cardiothoracic diseases to detect a specific chest disease based on CXR, use the advantage of GANs to overcome the shortages of small training datasets, address the problem of imbalanced data; and implementing optimal deep neural network architecture with different hyper-parameters to improve the model with the best accuracy. METHODS For this research, we are not building a model from scratch due to computational restraints as they require very high-end computers. Rather, we use a Convolutional Neural Network (CNN) as a class of deep neural networks to propose a generative adversarial network (GAN) -based model to generate synthetic data for training the data as the amount of the data is limited. We will use pre-trained models which are models that were trained on a large benchmark dataset to solve a problem similar to the one we want to solve. For example, the ResNet-152 model we used was initially trained on the ImageNet dataset. RESULTS After successful training and validation of the models we developed, ResNet-152 with image augmentation proved to be the best model for the automatic detection of cardiothoracic disease. However, one of the main problems associated with radiographic deep learning projects and research is the scarcity and unavailability of enough datasets which is a key component of all deep learning models as they require a lot of data for training. This is the reason why some of our models had image augmentation to increase the number of images without duplication. As more data are collected in the field of chest radiology, the models could be retrained to improve the accuracies of the models as deep learning models improve with more data. CONCLUSIONS This research employs the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of the disease. Using deep learning models, the research aims to evaluate the effectiveness and accuracy of different convolutional neural network models in the automatic diagnosis of cardiothoracic diseases from x-ray images compared to diagnosis by experts in the medical community.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 210 ◽  
Author(s):  
Zied Tayeb ◽  
Juri Fedjaev ◽  
Nejla Ghaboosi ◽  
Christoph Richter ◽  
Lukas Everding ◽  
...  

Non-invasive, electroencephalography (EEG)-based brain-computer interfaces (BCIs) on motor imagery movements translate the subject’s motor intention into control signals through classifying the EEG patterns caused by different imagination tasks, e.g., hand movements. This type of BCI has been widely studied and used as an alternative mode of communication and environmental control for disabled patients, such as those suffering from a brainstem stroke or a spinal cord injury (SCI). Notwithstanding the success of traditional machine learning methods in classifying EEG signals, these methods still rely on hand-crafted features. The extraction of such features is a difficult task due to the high non-stationarity of EEG signals, which is a major cause by the stagnating progress in classification performance. Remarkable advances in deep learning methods allow end-to-end learning without any feature engineering, which could benefit BCI motor imagery applications. We developed three deep learning models: (1) A long short-term memory (LSTM); (2) a spectrogram-based convolutional neural network model (CNN); and (3) a recurrent convolutional neural network (RCNN), for decoding motor imagery movements directly from raw EEG signals without (any manual) feature engineering. Results were evaluated on our own publicly available, EEG data collected from 20 subjects and on an existing dataset known as 2b EEG dataset from “BCI Competition IV”. Overall, better classification performance was achieved with deep learning models compared to state-of-the art machine learning techniques, which could chart a route ahead for developing new robust techniques for EEG signal decoding. We underpin this point by demonstrating the successful real-time control of a robotic arm using our CNN based BCI.


2021 ◽  
Author(s):  
Naveen Kumari ◽  
Rekha Bhatia

Abstract Facial emotion recognition extracts the human emotions from the images and videos. As such, it requires an algorithm to understand and model the relationships between faces and facial expressions, and to recognize human emotions. Recently, deep learning models are extensively utilized enhance the facial emotion recognition rate. However, the deep learning models suffer from the overfitting issue. Moreover, deep learning models perform poorly for images which have poor visibility and noise. Therefore, in this paper, a novel deep learning based facial emotion recognition tool is proposed. Initially, a joint trilateral filter is applied to the obtained dataset to remove the noise. Thereafter, contrast-limited adaptive histogram equalization (CLAHE) is applied to the filtered images to improve the visibility of images. Finally, a deep convolutional neural network is trained. Nadam optimizer is also utilized to optimize the cost function of deep convolutional neural networks. Experiments are achieved by using the benchmark dataset and competitive human emotion recognition models. Comparative analysis demonstrates that the proposed facial emotion recognition model performs considerably better compared to the competitive models.


2021 ◽  
pp. 1-17
Author(s):  
Hania H. Farag ◽  
Lamiaa A. A. Said ◽  
Mohamed R. M. Rizk ◽  
Magdy Abd ElAzim Ahmed

COVID-19 has been considered as a global pandemic. Recently, researchers are using deep learning networks for medical diseases’ diagnosis. Some of these researches focuses on optimizing deep learning neural networks for enhancing the network accuracy. Optimizing the Convolutional Neural Network includes testing various networks which are obtained through manually configuring their hyperparameters, then the configuration with the highest accuracy is implemented. Each time a different database is used, a different combination of the hyperparameters is required. This paper introduces two COVID-19 diagnosing systems using both Residual Network and Xception Network optimized by random search in the purpose of finding optimal models that give better diagnosis rates for COVID-19. The proposed systems showed that hyperparameters tuning for the ResNet and the Xception Net using random search optimization give more accurate results than other techniques with accuracies 99.27536% and 100 % respectively. We can conclude that hyperparameters tuning using random search optimization for either the tuned Residual Network or the tuned Xception Network gives better accuracies than other techniques diagnosing COVID-19.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


Author(s):  
Victoria Wu

Introduction: Scoliosis, an excessive curvature of the spine, affects approximately 1 in 1,000 individuals. As a result, there have formerly been implementations of mandatory scoliosis screening procedures. Screening programs are no longer widely used as the harms often outweigh the benefits; it causes many adolescents to undergo frequent diagnosis X-ray procedure This makes spinal ultrasounds an ideal substitute for scoliosis screening in patients, as it does not expose them to those levels of radiation. Spinal curvatures can be accurately computed from the location of spinal transverse processes, by measuring the vertebral angle from a reference line [1]. However, ultrasound images are less clear than x-ray images, making it difficult to identify the spinal processes. To overcome this, we employ deep learning using a convolutional neural network, which is a powerful tool for computer vision and image classification [2]. Method: A total of 2,752 ultrasound images were recorded from a spine phantom to train a convolutional neural network. Subsequently, we took another recording of 747 images to be used for testing. All the ultrasound images from the scans were then segmented manually, using the 3D Slicer (www.slicer.org) software. Next, the dataset was fed through a convolutional neural network. The network used was a modified version of GoogLeNet (Inception v1), with 2 linearly stacked inception models. This network was chosen because it provided a balance between accurate performance, and time efficient computations. Results: Deep learning classification using the Inception model achieved an accuracy of 84% for the phantom scan.  Conclusion: The classification model performs with considerable accuracy. Better accuracy needs to be achieved, possibly with more available data and improvements in the classification model.  Acknowledgements: G. Fichtinger is supported as a Canada Research Chair in Computer-Integrated Surgery. This work was funded, in part, by NIH/NIBIB and NIH/NIGMS (via grant 1R01EB021396-01A1 - Slicer+PLUS: Point-of-Care Ultrasound) and by CANARIE’s Research Software Program.    Figure 1: Ultrasound scan containing a transverse process (left), and ultrasound scan containing no transverse process (right).                                Figure 2: Accuracy of classification for training (red) and validation (blue). References:           Ungi T, King F, Kempston M, Keri Z, Lasso A, Mousavi P, Rudan J, Borschneck DP, Fichtinger G. Spinal Curvature Measurement by Tracked Ultrasound Snapshots. Ultrasound in Medicine and Biology, 40(2):447-54, Feb 2014.           Krizhevsky A, Sutskeyer I, Hinton GE. (2012). ImageNet Classification with Deep Convolutional Neural Networks. Advances in Neural Information Processing Systems 25:1097-1105. 


2022 ◽  
pp. 1559-1575
Author(s):  
Mário Pereira Véstias

Machine learning is the study of algorithms and models for computing systems to do tasks based on pattern identification and inference. When it is difficult or infeasible to develop an algorithm to do a particular task, machine learning algorithms can provide an output based on previous training data. A well-known machine learning model is deep learning. The most recent deep learning models are based on artificial neural networks (ANN). There exist several types of artificial neural networks including the feedforward neural network, the Kohonen self-organizing neural network, the recurrent neural network, the convolutional neural network, the modular neural network, among others. This article focuses on convolutional neural networks with a description of the model, the training and inference processes and its applicability. It will also give an overview of the most used CNN models and what to expect from the next generation of CNN models.


2019 ◽  
Vol 9 (13) ◽  
pp. 2758 ◽  
Author(s):  
Mujtaba Husnain ◽  
Malik Muhammad Saad Missen ◽  
Shahzad Mumtaz ◽  
Muhammad Zeeshan Jhanidr ◽  
Mickaël Coustaty ◽  
...  

In the area of pattern recognition and pattern matching, the methods based on deep learning models have recently attracted several researchers by achieving magnificent performance. In this paper, we propose the use of the convolutional neural network to recognize the multifont offline Urdu handwritten characters in an unconstrained environment. We also propose a novel dataset of Urdu handwritten characters since there is no publicly-available dataset of this kind. A series of experiments are performed on our proposed dataset. The accuracy achieved for character recognition is among the best while comparing with the ones reported in the literature for the same task.


Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4017 ◽  
Author(s):  
Davor Kolar ◽  
Dragutin Lisjak ◽  
Michał Pająk ◽  
Danijel Pavković

Fault diagnosis is considered as an essential task in rotary machinery as possibility of an early detection and diagnosis of the faulty condition can save both time and money. This work presents developed and novel technique for deep-learning-based data-driven fault diagnosis for rotary machinery. The proposed technique input raw three axes accelerometer signal as high definition 1D image into deep learning layers which automatically extract signal features, enabling high classification accuracy. Unlike the researches carried out by other researchers, accelerometer data matrix with dimensions 6400 × 1 × 3 is used as input for convolutional neural network training. Since convolutional neural networks can recognize patterns across input matrix, it is expected that wide input matrix containing vibration data should yield good classification performance. Using convolutional neural networks (CNN) trained model, classification in one of the four classes can be performed. Additionally, number of kernels of CNN is optimized using grid search, as preliminary studies show that alternating number of kernels impacts classification results. This study accomplished the effective classification of different rotary machinery states using convolutional artificial neural network for classification of raw three axis accelerometer signal input.


Sign in / Sign up

Export Citation Format

Share Document