scholarly journals Genderpredictions using Convolution Neural Networks

Nowadays Deep learning was advanced so much in our daily life. From 2014, there is massive growth in this technology as there is a vast amount of data present. We are even getting better results from whatever we may do. In my work, I have used Convolution Neural Networks as my project depends on image classification. So what I’m trying to do is I’m using two classes in which one class is male and one class is female. I’m classifying both the classes and trying to predict who is male and who is female. For this, I have been using layers like Sequential, Convolution2D, Max-pooling, Flattening, and finally Dense. So, I connect all of these layers. I have been using two more extra layers which are Convolution2D and max-pooling connected as one layer for better classifications. In my model, I’m using Adam optimizer as I’m having only two classes and in my experiments, I found Adam as a good optimizer and I use binary cross entropy as my loss function as I’m using only two classes if we have more than two classes we can use categorical loss function and the images which I use for predictions will be converted into 64*64 matrix form. In the end, I will be getting predictions as 1 for male and 0 for female.

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4054
Author(s):  
Kyung-Soo Kim ◽  
Yong-Suk Choi

As the performance of devices that conduct large-scale computations has been rapidly improved, various deep learning models have been successfully utilized in various applications. Particularly, convolution neural networks (CNN) have shown remarkable performance in image processing tasks such as image classification and segmentation. Accordingly, more stable and robust optimization methods are required to effectively train them. However, the traditional optimizers used in deep learning still have unsatisfactory training performance for the models with many layers and weights. Accordingly, in this paper, we propose a new Adam-based hybrid optimization method called HyAdamC for training CNNs effectively. HyAdamC uses three new velocity control functions to adjust its search strength carefully in term of initial, short, and long-term velocities. Moreover, HyAdamC utilizes an adaptive coefficient computation method to prevent that a search direction determined by the first momentum is distorted by any outlier gradients. Then, these are combined into one hybrid method. In our experiments, HyAdamC showed not only notable test accuracies but also significantly stable and robust optimization abilities when training various CNN models. Furthermore, we also found that HyAdamC could be applied into not only image classification and image segmentation tasks.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 456 ◽  
Author(s):  
Hao Cheng ◽  
Dongze Lian ◽  
Shenghua Gao ◽  
Yanlin Geng

Inspired by the pioneering work of the information bottleneck (IB) principle for Deep Neural Networks’ (DNNs) analysis, we thoroughly study the relationship among the model accuracy, I ( X ; T ) and I ( T ; Y ) , where I ( X ; T ) and I ( T ; Y ) are the mutual information of DNN’s output T with input X and label Y. Then, we design an information plane-based framework to evaluate the capability of DNNs (including CNNs) for image classification. Instead of each hidden layer’s output, our framework focuses on the model output T. We successfully apply our framework to many application scenarios arising in deep learning and image classification problems, such as image classification with unbalanced data distribution, model selection, and transfer learning. The experimental results verify the effectiveness of the information plane-based framework: Our framework may facilitate a quick model selection and determine the number of samples needed for each class in the unbalanced classification problem. Furthermore, the framework explains the efficiency of transfer learning in the deep learning area.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Chenrui Wen ◽  
Xinhao Yang ◽  
Ke Zhang ◽  
Jiahui Zhang

An improved loss function free of sampling procedures is proposed to improve the ill-performed classification by sample shortage. Adjustable parameters are used to expand the loss scope, minimize the weight of easily classified samples, and further substitute the sampling function, which are added to the cross-entropy loss and the SoftMax loss. Experiment results indicate that improvements in all classification performance of our loss function are shown in various network architectures and on different datasets. To summarize, compared with traditional loss functions, our improved version not only elevates classification performance but also lowers the difficulty of network training.


Author(s):  
Ankita Singh ◽  
◽  
Pawan Singh

The Classification of images is a paramount topic in artificial vision systems which have drawn a notable amount of interest over the past years. This field aims to classify an image, which is an input, based on its visual content. Currently, most people relied on hand-crafted features to describe an image in a particular way. Then, using classifiers that are learnable, such as random forest, and decision tree was applied to the extract features to come to a final decision. The problem arises when large numbers of photos are concerned. It becomes a too difficult problem to find features from them. This is one of the reasons that the deep neural network model has been introduced. Owing to the existence of Deep learning, it can become feasible to represent the hierarchical nature of features using a various number of layers and corresponding weight with them. The existing image classification methods have been gradually applied in real-world problems, but then there are various problems in its application processes, such as unsatisfactory effect and extremely low classification accuracy or then and weak adaptive ability. Models using deep learning concepts have robust learning ability, which combines the feature extraction and the process of classification into a whole which then completes an image classification task, which can improve the image classification accuracy effectively. Convolutional Neural Networks are a powerful deep neural network technique. These networks preserve the spatial structure of a problem and were built for object recognition tasks such as classifying an image into respective classes. Neural networks are much known because people are getting a state-of-the-art outcome on complex computer vision and natural language processing tasks. Convolutional neural networks have been extensively used.


2021 ◽  
Author(s):  
Ghassan Mohammed Halawani

The main purpose of this project is to modify a convolutional neural network for image classification, based on a deep-learning framework. A transfer learning technique is used by the MATLAB interface to Alex-Net to train and modify the parameters in the last two fully connected layers of Alex-Net with a new dataset to perform classifications of thousands of images. First, the general common architecture of most neural networks and their benefits are presented. The mathematical models and the role of each part in the neural network are explained in detail. Second, different neural networks are studied in terms of architecture, application, and the working method to highlight the strengths and weaknesses of each of neural network. The final part conducts a detailed study on one of the most powerful deep-learning networks in image classification – i.e. the convolutional neural network – and how it can be modified to suit different classification tasks by using transfer learning technique in MATLAB.


Sign in / Sign up

Export Citation Format

Share Document