scholarly journals HyAdamC: A New Adam-Based Hybrid Optimization Algorithm for Convolution Neural Networks

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4054
Author(s):  
Kyung-Soo Kim ◽  
Yong-Suk Choi

As the performance of devices that conduct large-scale computations has been rapidly improved, various deep learning models have been successfully utilized in various applications. Particularly, convolution neural networks (CNN) have shown remarkable performance in image processing tasks such as image classification and segmentation. Accordingly, more stable and robust optimization methods are required to effectively train them. However, the traditional optimizers used in deep learning still have unsatisfactory training performance for the models with many layers and weights. Accordingly, in this paper, we propose a new Adam-based hybrid optimization method called HyAdamC for training CNNs effectively. HyAdamC uses three new velocity control functions to adjust its search strength carefully in term of initial, short, and long-term velocities. Moreover, HyAdamC utilizes an adaptive coefficient computation method to prevent that a search direction determined by the first momentum is distorted by any outlier gradients. Then, these are combined into one hybrid method. In our experiments, HyAdamC showed not only notable test accuracies but also significantly stable and robust optimization abilities when training various CNN models. Furthermore, we also found that HyAdamC could be applied into not only image classification and image segmentation tasks.

Author(s):  
Mohammed Abdulla Salim Al Husaini ◽  
Mohamed Hadi Habaebi ◽  
Teddy Surya Gunawan ◽  
Md Rafiqul Islam ◽  
Elfatih A. A. Elsheikh ◽  
...  

AbstractBreast cancer is one of the most significant causes of death for women around the world. Breast thermography supported by deep convolutional neural networks is expected to contribute significantly to early detection and facilitate treatment at an early stage. The goal of this study is to investigate the behavior of different recent deep learning methods for identifying breast disorders. To evaluate our proposal, we built classifiers based on deep convolutional neural networks modelling inception V3, inception V4, and a modified version of the latter called inception MV4. MV4 was introduced to maintain the computational cost across all layers by making the resultant number of features and the number of pixel positions equal. DMR database was used for these deep learning models in classifying thermal images of healthy and sick patients. A set of epochs 3–30 were used in conjunction with learning rates 1 × 10–3, 1 × 10–4 and 1 × 10–5, Minibatch 10 and different optimization methods. The training results showed that inception V4 and MV4 with color images, a learning rate of 1 × 10–4, and SGDM optimization method, reached very high accuracy, verified through several experimental repetitions. With grayscale images, inception V3 outperforms V4 and MV4 by a considerable accuracy margin, for any optimization methods. In fact, the inception V3 (grayscale) performance is almost comparable to inception V4 and MV4 (color) performance but only after 20–30 epochs. inception MV4 achieved 7% faster classification response time compared to V4. The use of MV4 model is found to contribute to saving energy consumed and fluidity in arithmetic operations for the graphic processor. The results also indicate that increasing the number of layers may not necessarily be useful in improving the performance.


Nowadays Deep learning was advanced so much in our daily life. From 2014, there is massive growth in this technology as there is a vast amount of data present. We are even getting better results from whatever we may do. In my work, I have used Convolution Neural Networks as my project depends on image classification. So what I’m trying to do is I’m using two classes in which one class is male and one class is female. I’m classifying both the classes and trying to predict who is male and who is female. For this, I have been using layers like Sequential, Convolution2D, Max-pooling, Flattening, and finally Dense. So, I connect all of these layers. I have been using two more extra layers which are Convolution2D and max-pooling connected as one layer for better classifications. In my model, I’m using Adam optimizer as I’m having only two classes and in my experiments, I found Adam as a good optimizer and I use binary cross entropy as my loss function as I’m using only two classes if we have more than two classes we can use categorical loss function and the images which I use for predictions will be converted into 64*64 matrix form. In the end, I will be getting predictions as 1 for male and 0 for female.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2852
Author(s):  
Parvathaneni Naga Srinivasu ◽  
Jalluri Gnana SivaSai ◽  
Muhammad Fazal Ijaz ◽  
Akash Kumar Bhoi ◽  
Wonjoon Kim ◽  
...  

Deep learning models are efficient in learning the features that assist in understanding complex patterns precisely. This study proposed a computerized process of classifying skin disease through deep learning based MobileNet V2 and Long Short Term Memory (LSTM). The MobileNet V2 model proved to be efficient with a better accuracy that can work on lightweight computational devices. The proposed model is efficient in maintaining stateful information for precise predictions. A grey-level co-occurrence matrix is used for assessing the progress of diseased growth. The performance has been compared against other state-of-the-art models such as Fine-Tuned Neural Networks (FTNN), Convolutional Neural Network (CNN), Very Deep Convolutional Networks for Large-Scale Image Recognition developed by Visual Geometry Group (VGG), and convolutional neural network architecture that expanded with few changes. The HAM10000 dataset is used and the proposed method has outperformed other methods with more than 85% accuracy. Its robustness in recognizing the affected region much faster with almost 2× lesser computations than the conventional MobileNet model results in minimal computational efforts. Furthermore, a mobile application is designed for instant and proper action. It helps the patient and dermatologists identify the type of disease from the affected region’s image at the initial stage of the skin disease. These findings suggest that the proposed system can help general practitioners efficiently and effectively diagnose skin conditions, thereby reducing further complications and morbidity.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


2021 ◽  
Vol 10 (9) ◽  
pp. 25394-25398
Author(s):  
Chitra Desai

Deep learning models have demonstrated improved efficacy in image classification since the ImageNet Large Scale Visual Recognition Challenge started since 2010. Classification of images has further augmented in the field of computer vision with the dawn of transfer learning. To train a model on huge dataset demands huge computational resources and add a lot of cost to learning. Transfer learning allows to reduce on cost of learning and also help avoid reinventing the wheel. There are several pretrained models like VGG16, VGG19, ResNet50, Inceptionv3, EfficientNet etc which are widely used.   This paper demonstrates image classification using pretrained deep neural network model VGG16 which is trained on images from ImageNet dataset. After obtaining the convolutional base model, a new deep neural network model is built on top of it for image classification based on fully connected network. This classifier will use features extracted from the convolutional base model.


Author(s):  
N.T. Abdullaev ◽  
U.N. Musevi ◽  
K.S. Pashaeva

Formulation of the problem. This work is devoted to the use of artificial neural networks for diagnosing the functional state of the gastrointestinal tract caused by the influence of parasites in the body. For the experiment, 24 symptoms were selected, the number of which can be increased, and 9 most common diseases. The coincidence of neural network diagnostics with classical medical diagnostics for a specific disease is shown. The purpose of the work is to compare the neural networks in terms of their performance after describing the methods of preprocessing, isolating symptoms and classifying parasitic diseases of the gastrointestinal tract. Computer implementation of the experiment was carried out in the NeuroPro 0.25 software environment and optimization methods were chosen for training the network: "gradient descent" modified by Par Tan, "conjugate gradients", BFGS. Results. The results of forecasting using a multilayer perceptron using the above optimization methods are presented. To compare optimization methods, we used the values of the minimum and maximum network errors. Comparison of optimization methods using network errors makes it possible to draw the correct conclusion that for the task at hand, the best results were obtained when using the "conjugate gradients" optimization method. Practical significance. The proposed approach facilitates the work of the experimenter-doctor in choosing the optimization method when working with neural networks for the problem of diagnosing parasitic diseases of the gastrointestinal tract from the point of view of assessing the network error.


Sign in / Sign up

Export Citation Format

Share Document