scholarly journals Performance Evaluation of Range Search Algorithm for k-dSLst Tree

2019 ◽  
Vol 8 (3) ◽  
pp. 4432-4441

The indexing structures for spatial data are used to organize the data related to spatial objects with respect to their position. These indexing structures are indispensable in various applications like geographic information systems, robotics, computer graphics, CAD/CAM and many more. The range queries related to multiple dimensions are the crucial facet of many spatial applications. In this paper, we are introducing an algorithm kdSLst Objects In Range Search to search for spatial objects within a given range. We will be implementing this algorithm for k-dSLst tree, a spatial indexing tree based on k-d tree and linked list to store spatial data with duplicate keys, which we introduced in our earlier work. The experimental results show that the algorithm kdSLstObjectsInRangeSearch outperforms algorithm bruteForceRangeSearch based on brute force method of searching

Author(s):  
K. Al Kalbani ◽  
A. Abdul Rahman

Abstract. The paper investigates the capability to integrate the surface and subsurface 3D spatial objects data structure within the 3D spatial data infrastructure (3D SDI) based on the CityGML standards. In fact, a number of countries around the world have started applying the 3D city models for their planning and infrastructure management. While others are still working toward 3D SDI by using CityGML standards. Moreover, most of these initiatives focus on the surface spatial objects with less interest to model subsurface spatial objects. However, dealing with 3D SDI requires both surface and subsurface spatial objects with clear consideration on the issues and challenges in terms of the data structure. On the other hand, the study has used geospatial tools and databases such as FME, PostgreSQL-PostGIS, and 3D City Database to generate the 3D model and to test the capability for integrating the surface and subsurface 3D spatial objects data structure within the 3D SDI. This paper concludes by describing a framework that aims to integrate surface and subsurface 3D geospatial objects data structure in Oman SDI. The authors believe that there are possible solutions based on CityGML standards for surface and subsurface 3D spatial objects. Moreover, solving the issues in data structure can establish a better vision and open new avenues for the 3D SDI.


2021 ◽  
pp. 24-43
Author(s):  
Shabnam Kasra Kermanshahi ◽  
Rafael Dowsley ◽  
Ron Steinfeld ◽  
Amin Sakzad ◽  
Joseph K. Liu ◽  
...  

OOIS’ 95 ◽  
1996 ◽  
pp. 189-199
Author(s):  
Changcheng Dong ◽  
Paul Luker ◽  
Philippa Berry ◽  
Hongji Yang
Keyword(s):  

2016 ◽  
Vol 83 (7) ◽  
Author(s):  
Grace X. Gu ◽  
Leon Dimas ◽  
Zhao Qin ◽  
Markus J. Buehler

A paradigm in nature is to architect composites with excellent material properties compared to its constituents, which themselves often have contrasting mechanical behavior. Most engineering materials sacrifice strength for toughness, whereas natural materials do not face this tradeoff. However, biology's designs, adapted for organism survival, may have features not needed for some engineering applications. Here, we postulate that mimicking nature's elegant use of multimaterial phases can lead to better optimization of engineered materials. We employ an optimization algorithm to explore and design composites using soft and stiff building blocks to study the underlying mechanisms of nature's tough materials. For different applications, optimization parameters may vary. Validation of the algorithm is carried out using a test suite of cases without cracks to optimize for stiffness and compliance individually. A test case with a crack is also performed to optimize for toughness. The validation shows excellent agreement between geometries obtained from the optimization algorithm and the brute force method. This study uses different objective functions to optimize toughness, stiffness and toughness, and compliance and toughness. The algorithm presented here can provide researchers a way to tune material properties for a vast number of engineering problems by adjusting the distribution of soft and stiff materials.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1726
Author(s):  
Premkumar Vincent ◽  
Gwenaelle Cunha Sergio ◽  
Jaewon Jang ◽  
In Man Kang ◽  
Jaehoon Park ◽  
...  

Thin-film solar cells are predominately designed similar to a stacked structure. Optimizing the layer thicknesses in this stack structure is crucial to extract the best efficiency of the solar cell. The commonplace method used in optimization simulations, such as for optimizing the optical spacer layers’ thicknesses, is the parameter sweep. Our simulation study shows that the implementation of a meta-heuristic method like the genetic algorithm results in a significantly faster and accurate search method when compared to the brute-force parameter sweep method in both single and multi-layer optimization. While other sweep methods can also outperform the brute-force method, they do not consistently exhibit 100% accuracy in the optimized results like our genetic algorithm. We have used a well-studied P3HT-based structure to test our algorithm. Our best-case scenario was observed to use 60.84% fewer simulations than the brute-force method.


2015 ◽  
Vol 41 (4) ◽  
pp. 156-161 ◽  
Author(s):  
Žilvinas Stankevičius ◽  
Dominykas Šlikas ◽  
Darius Popovas

In developed countries the most accurate and reliable spatial data (M 1:500–1:1000) are extensively used. The same spatial object could be inscribed into separate systems: utilities companies have some systems, municipality collected catalogues of CAD data, separately developed real estate map. The same spatial objects are repeated and reiterated, unreasonable costs are incurred for their storage, the customers find it complicated to determine and select the best and appropriate spatial data required just for their own needs. This article suggests the solution of the problem. Authors have introduced the idea to compose and develop information system specialized for topography and infrastructure subsequently to be merged and coordinated. The model for data storage, data provision to the customers and service activities is defined. The available electronic services for the spatial data are described as advantageous for implementation on topographic maps, for inspection and monitoring of construction projects, for the issue of permits of excavation works and for the other activities.


Sign in / Sign up

Export Citation Format

Share Document