scholarly journals Strength Properties of Geopolymer Concrete with Ground Granulated Blast Furnace Slag and Metakaolin

In this study, geopolymer concrete is prepared by using 100% Ground Granulated Blast furnace Slag (GGBS). Then the GGBS is replaced by Metakaolin from 0 to 25% with the variation of 5% for preparing the specimens. The activator solution consists of Sodium hydroxide of 12 Molarity and sodium silicate in the ratio of 1: 2.5. 550kg/m3 of GGBS is used in this study. A carboxylic based admixture called La Hypercrete S25 is added in the mix by 1% of the weight of GGBS to increase the workability. The studies conducted on the specimens are compression test, split tensile test and flexure test. For conducting the compression test, 54 concrete cubes of size 100mm x 100mm x 100mm are cast for testing at 7, 14 and 28 days. For splitting tensile strength, 54 concrete cylinders with 100 mm dia and 200 mm height are cast for testing at 7, 14 and 28 days. The flexure test specimens are beams of 500 mm length and 100mm x 100mm in cross section are cast. These are 54 in numbers .Specimens are cast by replacing the GGBS by Metakaolin in 5, 10, 15, 20 and 25%. All the specimens are cured for 7, 14 and 28 days and tested for compression, split tensile and flexure. The test results reveal that the strengths are gradually increasing for 5, 10 and 15% replacement of GGBS by Metakaolin and give the highest value for 20% in all the tests. It also shows further increased replacements reduces the test values. It proves that geopolymer concrete performs well in strength properties with GGBS and Metakaolin.

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Maria Rajesh Antonyamaladhas ◽  
Selvamony Chachithanantham ◽  
Anandakumar Ramaswamy

This paper deals with the behaviour of geopolymer concrete using ground granulated blast furnace slag and steel fibre to compare with M40 grade cement concrete. The cast GPC specimens were placed in a hot curing chamber at 60∘C temperature for 24 hours and tested after 1, 7, 14, and 28 days of ambient curing to find the strength and durability of hardened concrete. The optimum value of compressive strength was attained at 12 Molarities. Fly ash was replaced by GGBS in GPC with different proportions such as 0% to 60% at 5% interval; the optimum strength value was obtained on 40% replacement. From the test results, the compressive, split-tensile, and flexural strength of GPC specimens were 20%, 43%, and 53% higher than those of the control specimens. Based on the optimum strength mix proportion, the structural elements were cast to investigate the stress-strain relations. The GPC beam and L-section showed 33% and 16% higher value. From the results of acid and sulphate resistance tests, it was found that the strength and weight ratio of GPC were higher than the control specimens. From the simulations, it was found that the experimental test results were approximately equal to the ANSYS.


Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 306
Author(s):  
Fatheali A. Shilar ◽  
Sharanabasava V. Ganachari ◽  
Veerabhadragouda B. Patil ◽  
Kottakkaran Sooppy Nisar ◽  
Abdel-Haleem Abdel-Aty ◽  
...  

Industrial waste such as Ground Granulated Blast-Furnace Slag (GGBS) and Granite Waste Powder (GWP) is available in huge quantities in several states of India. These ingredients have no recognized application and are usually shed in landfills. This process and these materials are sources of severe environmental pollution. This industrial waste has been utilized as a binder for geopolymers, which is our primary focus. This paper presents the investigation of the optimum percentage of granite waste powder as a binder, specifically, the effect of molar and alkaline to binder (A/B) ratio on the mechanical properties of geopolymer concrete (GPC). Additionally, this study involves the use of admixture SP-340 for better performance of workability. Current work focuses on investigating the effect of a change in molarity that results in strength development in geopolymer concrete. The limits for the present work were: GGBS partially replaced by GWP up to 30%; molar ranging from 12 to 18 with the interval of 2 M; and A/B ratio of 0.30. For 16 M of GPC, a maximum slump was observed for GWP with 60 mm compared to other molar concentration. For 16 M of GPC, a maximum compressive strength (CS) was observed for GWP with 20%, of 33.95 MPa. For 16 M of GPC, a maximum STS was observed for GWP, with 20%, of 3.15 MPa. For 16 M of GPC, a maximum FS was observed for GWP, with 20%, of 4.79 MPa. Geopolymer concrete has better strength properties than conventional concrete. GPC is $13.70 costlier than conventional concrete per cubic meter.


This paper aims to investigate the influence of alkaline activators solution i.e, Na2SiO3 / NaOH on compressive strength of geopolymer concrete mixed with Ground Granulated Blast furnace slag (GGBS) for constant molarity 8 M. The ratio of alkali to binder ratio is taken as 0.5 and the ratio of Na2SiO3 / NaOH is 2.5. The geopolymer mix is based on pervious sutdies. As per Indian standard size moulds for the cube, cylinder and prism are cast, cured and tested.The specimens were tested for fresh concrete properties such as slump cone test and hardened properties such as compressive strength for cubes, split tensile strength for cylinders and flexural strength for prism different days of curing under ambient temperature. Also, a microstructural study is done by using Scanning electron microscopy (SEM), Energy dispersive X-ray (EDX) for the tested sample. It is found from the test results that, with the aid of alumino-silicate solution, early strength is achieved by geopolymer concrete within 7 days under ambient condition due to the presence of ground granulated slag.


2020 ◽  
Vol 8 (5) ◽  
pp. 4691-4696

This paper comprises of the experimental study of double skinned (DSCFT) Composite hollow columns using Geopolymer concrete. The diameter-thickness (D/t) ratio and the hollowness ratio were consideredas main parameters in designing the specimens. The Geopolymer Concrete used in this project is the most promising technique. It is composed of fly-ash, fine aggregate, coarse aggregate and alkaline solution. By using large volume of ordinary Portland cement (OPC) concrete, the production of cement increases 3% annually. The production of one ton of cement directly liberates about 1 ton of CO2 and indirectly liberates 0.4 ton of CO2 to atmosphere. Among the greenhouse gases, CO2 contributes about 67% of global warming. In this respect fly ash based geopolymer mortar is highly considerable. But most of the previous works on fly ash-based geopolymers concrete reveals that hardening is due to heat curing, which is considered as a limitation for cast in situ applications at low ambient temperatures. In order to overcome this situation, replacing the Ground blast furnace slag with fly ash for various proportions to achieve geopolymer concrete suitable for curing without elevated heat. The Scope of this project is to find optimization level of Ground Granulated blast furnace slag in geopolymer concrete for curing in ambient condition and to analyze the compressive Strength of optimized GGBS based Geopolymer Concrete filled double skinned steel tube by varying the size of the steel tubes.


Sign in / Sign up

Export Citation Format

Share Document