scholarly journals Iprivacy-Performance Measurement of Encrypted Image Over Mobile Cloud

2019 ◽  
Vol 8 (4) ◽  
pp. 2919-2923

Basically, people can use mobile phones to capture images and upload to cloud storage. While uploaded the data to cloud especially image, untrusted third party cloud vendors may pass to unauthorised users for their profit. And maintaining image Privacy is the major current issue in the cloud storage and resource-limited mobile devices. Due to the overcome of these issues, the proposed work introduced the algorithm PrivacyPreserving algorithm for Image Encryption (PPIE) to secure the encrypted image of mobile on cloud. The proposed architecture is handled by three processes such as Divide, Chunk group and Scramble (DCS) for fast execution. For achieving the high performance of the mobile system, the proposed algorithm reduced the encryption time to speed up the mobile system with limited mobile resources. The main highlights are keeping metadata on mobile rather than cloud. Even cloud service provider cannot able to retain the original image. The performance measures of PPIE, by various JPEG images, are calculated by various metrics such as throughput, Key sensitivity, Low Complexity, Processing Time and Time Consumption. It was proved to be reduced by 50% of time consumption while compared to AES. The proposed work may prevent users from accessing of private images.

2019 ◽  
Vol 214 ◽  
pp. 07012 ◽  
Author(s):  
Nikita Balashov ◽  
Maxim Bashashin ◽  
Pavel Goncharov ◽  
Ruslan Kuchumov ◽  
Nikolay Kutovskiy ◽  
...  

Cloud computing has become a routine tool for scientists in many fields. The JINR cloud infrastructure provides JINR users with computational resources to perform various scientific calculations. In order to speed up achievements of scientific results the JINR cloud service for parallel applications has been developed. It consists of several components and implements a flexible and modular architecture which allows to utilize both more applications and various types of resources as computational backends. An example of using the Cloud&HybriLIT resources in scientific computing is the study of superconducting processes in the stacked long Josephson junctions (LJJ). The LJJ systems have undergone intensive research because of the perspective of practical applications in nano-electronics and quantum computing. In this contribution we generalize the experience in application of the Cloud&HybriLIT resources for high performance computing of physical characteristics in the LJJ system.


2013 ◽  
Vol 765-767 ◽  
pp. 1630-1635
Author(s):  
Wen Qi Ma ◽  
Qing Bo Wu ◽  
Yu Song Tan

One of differences between cloud storage and previous storage is that there is a financial contract between user and the cloud service provider (CSP). User pay for service in exchange for certain guarantees and the cloud is a liable entity. But some mechanisms need to ensure the liability of CSP. Some work use non-repudiation to realize it. Compared with these non-repudiation schemes, we use third party auditor not client to manage proofs and some metadata, which are security critical data in cloud security. It can provide a more security environment for these data. Against the big overhead in update process of current non-repudiation scheme, we propose three schemes to improve it.


2012 ◽  
Vol 2 (3) ◽  
pp. 68-85 ◽  
Author(s):  
Nawsher Khan ◽  
Noraziah Ahmad ◽  
Tutut Herawan ◽  
Zakira Inayat

Efficiency (in term of time consumption) and effectiveness in resources utilization are the desired quality attributes in cloud services provision. The main purpose of which is to execute jobs optimally, i.e., with minimum average waiting, turnaround and response time by using effective scheduling technique. Replication provides improved availability and scalability; decreases bandwidth use and increases fault tolerance. To speed up access, file can be replicated so a user can access a nearby replica. This paper proposes architecture to convert Globally One Cloud to Locally Many Clouds. By combining replication and scheduling, this architecture improves efficiency and easy accessibility. In the case of failure of one sub cloud or one cloud service, clients can start using another cloud under “failover” techniques. As a result, no one cloud service will go down.


Author(s):  
Manash Sarkar ◽  
Soumya Banerjee ◽  
Youakim Badr ◽  
Arun Kumar Sangaiah

Emerging research concerns about the authenticated cloud service with high performance of security and assuring trust for distributed clients in a smart city. Cloud services are deployed by the third-party or web-based service providers. Thus, security and trust would be considered for every layer of cloud architecture. The principle objective of cloud service providers is to deliver better services with assurance of trust about clients' information. Cloud's users recurrently face different security challenges about the use of sharable resources. It is really difficult for Cloud Service Provider for adapting varieties of security policies to sustain their enterprises' goodwill. To make an optimistic decision that would be better suitable to provide a trusted cloud service for users' in smart city. Statistical method known as Multivariate Normal Distribution is used to select different attributes of different security entities for developing the proposed model. Finally, fuzzy multi objective decision making and Bio-Inspired Bat algorithm are applied to achieve the objective.


2021 ◽  
Vol 23 (11) ◽  
pp. 86-98
Author(s):  
Raziqa Masood ◽  
◽  
Q.P. Rana ◽  

Today cloud computing has been the most popular service enjoyed by people due to the easy maintenance provided by it. Cloud computing is cost-efficient and people pay according to the services they use. Many organizations are using cloud storage and the reason behind it is that the outsourcing services are provided by the cloud computing. Most of people do not trust the legality of the services provided by cloud (CSPs i.e. cloud service providers) because they are afraid of the security breach of their data. The public auditing of the data by their owners is a technique that can maintain the trust of people on cloud services. This research paper is about cloud storage services based on the distributed hash table (DHT).This is required for dynamic auditing of information as this is new two-dimensional data and Third-party Auditor (TPA) is responsible for recording the information to do dynamic auditing and the dimensional data is located at TPA. The computational costs gets reduced when the authorized information is migrated to the two dimensional data and the Cloud service provider shifts it to the TPA DHT has many structural advantages and the services can be updated efficiently. The comparison with the present system is also made and is assured that it is the security system for the cloud storage. To secure the data information by blinding it, random masking is provided as a proof for securing process. The authentication is done via hashing technique and integrity and performance checks are made with this authentication process.


Cloud computing is a technology for sharing the resources for on demand request and for processing the data. It facilitates cloud storage for adopting cloud users with the help of cloud service providers. It enhances need of enterprises by adhering large volume of data to store and owned privately through third party auditors via data centres. The proposed system analyse cloud storage and provide free data storage for computing the data and maintain variety of cloud storage in one place. This scenario promotes storage of files in one system, so the user doesn’t require various accounts like GoogleDrive, Microsoft Onedrive and Dropbox. This application enhances multiple cloud storage for accessing all files in one particular storage area. The proposed system eradicates visiting of multiple sites for downloading the apps and reduces installing of multiple apps for downloading all the files. The work mainly focuses on the SaaS that permits users to upload data and share the resources from the cloud to post in the Web browser. Our work designed for creating single level of Application programming interface which is for all the cloud service providers. This adopts external applications that leverage the service of platform which is easier to build scalable, and automated cloud based applications. The final API promotes multiple cloud storage in one place and leads to provision Federated Cloud


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Hanzhe Yang ◽  
Ruidan Su ◽  
Pei Huang ◽  
Yuhan Bai ◽  
Kai Fan ◽  
...  

With the rapid growth of data, limited by the storage capacity, more and more IoT applications choose to outsource data to Cloud Service Providers (CSPs). But, in such scenarios, outsourced data in cloud storage can be easily corrupted and difficult to be found in time, which brings about potential security issues. Thus, Provable Data Possession (PDP) protocol has been extensively researched due to its capability of supporting efficient audit for outsourced data in cloud. However, most PDP schemes require the Third-Party Auditor (TPA) to audit data for Data Owners (DOs), which requires the TPA to be trustworthy and fair. To eliminate the TPA, we present a Public Mutual Audit Blockchain (PMAB) for outsourced data in cloud storage. We first propose an audit chain architecture based on Ouroboros and an incentive mechanism based on credit to allow CSPs to audit each other mutually with anticollusion (any CSP is not willing to help other CSPs conceal data problems). Then, we design an audit protocol to achieve public audit efficiently with low cost of audit verification. Rigorous analysis explains the security of PMAB using game theory, and performance analysis shows the efficiency of PMAB using the real-world dataset.


Cryptography ◽  
2021 ◽  
Vol 5 (4) ◽  
pp. 37
Author(s):  
Noha E. El-Attar ◽  
Doaa S. El-Morshedy ◽  
Wael A. Awad

The need for cloud storage grows day after day due to its reliable and scalable nature. The storage and maintenance of user data at a remote location are severe issues due to the difficulty of ensuring data privacy and confidentiality. Some security issues within current cloud systems are managed by a cloud third party (CTP), who may turn into an untrustworthy insider part. This paper presents an automated Encryption/Decryption System for Cloud Data Storage (AEDS) based on hybrid cryptography algorithms to improve data security and ensure confidentiality without interference from CTP. Three encryption approaches are implemented to achieve high performance and efficiency: Automated Sequential Cryptography (ASC), Automated Random Cryptography (ARC), and Improved Automated Random Cryptography (IARC) for data blocks. In the IARC approach, we have presented a novel encryption strategy by converting the static S-box in the AES algorithm to a dynamic S-box. Furthermore, the algorithms RSA and Twofish are used to encrypt the generated keys to enhance privacy issues. We have evaluated our approaches with other existing symmetrical key algorithms such as DES, 3DES, and RC2. Although the two proposed ARC and ASC approaches are more complicated, they take less time than DES, DES3, and RC2 in processing the data and obtaining better performance in data throughput and confidentiality. ARC outperformed all of the other algorithms in the comparison. The ARC’s encrypting process has saved time compared with other algorithms, where its encryption time has been recorded as 22.58 s for a 500 MB file size, while the DES, 3DES, and RC2 have completed the encryption process in 44.43, 135.65, and 66.91 s, respectively, for the same file size. Nevertheless, when the file sizes increased to 2.2 GB, the ASC proved its efficiency in completing the encryption process in less time.


2019 ◽  
pp. 847-869
Author(s):  
Manash Sarkar ◽  
Soumya Banerjee ◽  
Youakim Badr ◽  
Arun Kumar Sangaiah

Emerging research concerns about the authenticated cloud service with high performance of security and assuring trust for distributed clients in a smart city. Cloud services are deployed by the third-party or web-based service providers. Thus, security and trust would be considered for every layer of cloud architecture. The principle objective of cloud service providers is to deliver better services with assurance of trust about clients' information. Cloud's users recurrently face different security challenges about the use of sharable resources. It is really difficult for Cloud Service Provider for adapting varieties of security policies to sustain their enterprises' goodwill. To make an optimistic decision that would be better suitable to provide a trusted cloud service for users' in smart city. Statistical method known as Multivariate Normal Distribution is used to select different attributes of different security entities for developing the proposed model. Finally, fuzzy multi objective decision making and Bio-Inspired Bat algorithm are applied to achieve the objective.


2013 ◽  
Vol 347-350 ◽  
pp. 2693-2699 ◽  
Author(s):  
Li Xuan Wang ◽  
Li Fang Liu ◽  
Shen Ling Liu ◽  
Dong Chen ◽  
Yu Jiao Chen

The increasing popularity of cloud service is leading people to concentrate more on cloud storage than traditional storage. However, cloud storage confronts many challenges, especially, the security of the out-sourced data (the data that is not stored/retrieved from the tenants own servers). Security not only can keep the data from attacking but also can recover the original data after attack efficiently. Thus, to address the security issue, we proposed a new distributed and data fragmentation model of cloud storage named DDFM (Distributed and Data Fragmentation Model). DDFM aims to provide tenants a secured and integrated cloud storage service with layer-to-layer protection strategy. The layer-to-layer protection strategy of our model includes three main algorithms: the Authentication and Authorization Management Algorithm based on OpenID and OAuth, the Data Fragment Algorithm based on Granular Computing and the Haystack File Storage Algorithm. Considering tenants' security requirement our model DDFM based on these algorithms provided a better decision of cloud storage architecture for our tenants. Furthermore, DDFM can defense most of the network threats and provide a secured way for the third-party applications to access sensitive information that stored on the cloud storage.


Sign in / Sign up

Export Citation Format

Share Document