scholarly journals Stand-Alone Hybrid Wind-Diesel Power Systems for Commercial Loads of Turaif-Saudi Arabia - Techno-Economics of Hot Desert Regions for Sustainable Clean Future

2020 ◽  
Vol 8 (5) ◽  
pp. 2212-2217

Hybrid wind-diesel technology is disseminated world-wide to minimize depletion of fossil-fuels and carbon emissions. Appreciable amount (10-40%) of energy generated is consumed by commercial/residential buildings of Kingdom of Saudi Arabia (K.S.A.). This investigation aims at techno-economic assessment of hybrid wind-diesel systems (HWDS) to satisfy electrical demand (620,000 kWh per year) of a representative commercial building at Turaif (Northern Province, K.S.A.) by analysis of wind speed data. As per the study, the monthly average wind speed of Turaif lies in the range 3.4 - 4.4 meters per second. The configurations simulated include various mixes of 100 kW wind machines (WTG) and diesel systems. The techno-economic evaluation is carried out by using NREL’s (HOMER Energy’s) HOMER software. The results point out that the wind fraction (with zero % load rejection) is 20% for a hybrid configuration composed of one 100 kW WTG together and 175 kW diesel generator. The energy generation cost (COE) from this system is 0.123 $/kWh. Also, 20% wind fraction, results in reducing carbon emissions by 91 tons/year. The diesel operation time is less with higher penetration of wind. Also, emphasis is on effect of wind fraction on energy produced, COE, operational time of diesel sets, un-met load, excess energy, fuel savings, carbon emissions, cost of HWDS, etc.

2015 ◽  
Vol 19 (1) ◽  
pp. 167-178
Author(s):  
S.M. Shaahid

The governments world-wide are deliberating to promote renewable energy sources such as wind to mitigate increasing demand of energy and to overcome effects of pollution due to to use of fossil fuels. Integration of wind turbine generators (WTG) with the diesel plants is pursued widely to reduce dependence on fossil-fuels and to reduce carbon emissions. Literature indicates that commercial/residential buildings in the Kingdom of Saudi Arabia (K.S.A) consume an estimated 10 - 40% of the total electric energy generated. The aim of this study is to analyze wind-speed data of Dhahran (East-Coast, K.S.A.) to assess the economic feasibility of utilizing hybrid wind-diesel power systems to meet the load requirements of a typical commercial building (with annual electrical energy demand of 620,000 kWh). The monthly average wind speeds range from 3.3 to 5.6 m/s. The hybrid systems simulated consist of different combinations of 100 kW commercial WTG supplemented with diesel generators. NREL?s (HOMER Energy?s) HOMER software has been employed to perform the techno-economic analysis. The simulation results indicate that for a hybrid system comprising of 100 kW wind capacity together with 175 kW diesel system, the wind penetration (at 37 m hub-height, with 0% annual capacity shortage) is 25%. The cost of generating energy (COE, $/kWh) from this hybrid wind-diesel system has been found to be 0.121 $/kWh (assuming diesel fuel price of 0.1$/liter). The study exhibits that for a given hybrid configuration, the number of operational hours of diesel gensets decreases with increase in wind farm capacity. Emphasis has also been placed on wind penetration, un-met load, energy production and COE, excess electricity generation, percentage fuel savings and reduction in carbon emissions (relative to diesel-only situation) of different hybrid systems, cost break-down of wind-diesel systems, COE of different hybrid systems, etc.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
O. V. Marchenko ◽  
S. V. Solomin

The economic efficiency of harnessing wind energy in the autonomous power systems of Russia is analyzed. Wind turbines are shown to be competitive for many considered variants (groups of consumers, placement areas, and climatic and meteorological conditions). The authors study the possibility of storing energy in the form of hydrogen in the autonomous wind/diesel/hydrogen power systems that include wind turbines, diesel generator, electrolyzer, hydrogen tank, and fuel cells. The paper presents the zones of economic efficiency of the system (set of parameters that provide its competitiveness) depending on load, fuel price, and long-term average annual wind speed. At low wind speed and low price of fuel, it is reasonable to use only diesel generator to supply power to consumers. When the fuel price and wind speed increase, first it becomes more economical to use a wind-diesel system and then wind turbines with a hydrogen system. In the latter case, according to the optimization results, diesel generator is excluded from the system.


2017 ◽  
Vol 21 (1 Part B) ◽  
pp. 745-756 ◽  
Author(s):  
Syed Shaahid

In view of growing concerns of global warming and depleting oil/gas reserves, many nations are considering use of hybrid photovoltaic-diesel technology as an option for power generation The Kingdom of Saudi Arabia has higher level of solar radiation and is a prospective candidate for deployment of solar photovoltaic systems. Literature indicates that commercial/residential buildings in the Kingdom consume about 10-45% of the total electric energy generated. The aim of this study is to analyze solar radiation data in city of Yanbu to assess the technoeconomic feasibility of utilizing hybrid photovoltaic-diesel-battery power systems to meet the load of a typical residential building. The monthly average daily solar global radiation ranges from 3.61 to 7.90 kWh/m2 . National Renewable Energy Laboratory?s HOMER software has been used in the study. The simulation results indicate that for a hybrid system, composed of 4 kWp photovoltaic system together with 10 kW diesel system, and a battery storage of 3 hours of autonomy (average load), the photovoltaic penetration is 21%. The cost of generating energy from that hybrid system has been found to be 0.180 $/kWh. With use of this hybrid system, about 2 tons per year of carbon emissions can be avoided entering into the local atmosphere. Also, for a given hybrid configuration, the operational time of diesel generators has been found to decrease with increase in photovoltaic capacity. The investigation examines impact of photovoltaic penetration on: carbon emissions, diesel fuel consumption, net present cost, cost of energy, etc.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2796
Author(s):  
Andrzej Osuch ◽  
Ewa Osuch ◽  
Stanisław Podsiadłowski ◽  
Piotr Rybacki

In the introduction to this paper, the characteristics of Góreckie lake and the construction and operation of the wind-driven pulverizing aerator are presented. The purpose of this manuscript is to determine the efficiency of the pulverizing aerator unit in the windy conditions of Góreckie Lake. The efficiency of the pulverization aerator depends on the wind conditions at the lake. It was necessary to conduct thorough research to determine the efficiency of water flow through the pulverization segment (water pump). It was necessary to determine the rotational speed of the paddle wheel, which depended on the average wind speed. Throughout the research period, measurements of hourly average wind speed were carried out. It was possible to determine the efficiency of the machine by developing a dedicated mathematical model. The latest method was used in the research, consisting of determining the theoretical volumetric flow rates of water in the pulverizing aerator unit, based on average hourly wind speeds. Pulverization efficiency under the conditions of Góreckie Lake was determined based on 6600 average wind speeds for spring, summer and autumn, 2018. Based on the model, the theoretical efficiency of the machine was calculated, which, under the conditions of Góreckie Lake, amounted to 75,000 m3 per year.


Author(s):  
Jinming Mo ◽  
Wei Ma ◽  
Dandan Li ◽  
Sheji Zhang

A fully mechanized mining face is characterized by serious dust pollution and dust is a major cause of pneumoconiosis that haunts numerous miners. For a fully mechanized face having large mining heights, the main dust source in the pavement area is produced by the moving support frame. To reduce the amount of dust during support's movement, the distribution and dissipation of dust in this process were studied by combining numerical simulations with underground measurements. The results showed that with an increase of the distance from the air inlet, the wind speed of the sidewalk in the fully mechanized face first increased, then decreased, and finally increased again. At the position of the coal cutter, the highest wind speed was 1.78 m/s and the average wind speed of the roadway was about 0.8 m/s. The dust concentration at the dust source was >1000 mg/m3. An area with a high dust concentration and having a length of 15 m was formed on the rooftop, together with a 50 m long dust belt with a dust concentration of 300 to 450 mg/m3 in the pavement area of 10 m from the dust source. Beyond the 45 m radius from the dust source, the dust concentration was stable at about 250 mg/m3. Based on the dust production characteristics of the support frame, an enclosed dust-guiding device was designed and structure-optimized. Based on the on-site field application test results, it was found that the device has a satisfactory dust-guiding effect during support movement and the dust suppression rate near the dust source reached 94.8%.


2018 ◽  
Vol 164 ◽  
pp. 01038
Author(s):  
Ridho Hantoro ◽  
Cahyun Budiono ◽  
Ronald Kipkoech Ketter ◽  
Nyoman Ade Satwika

Over 70 000 000 people in Indonesia have no access to electricity. This study was carried out in Bawean Islands which are located in the Java Sea about 150 km North of Surabaya, the headquarters of East Java. The study to determine the energy services available in the Bawean Island was done through interviewing a random sample of 72 households in two villages namely Komalasa and Lebak. Based on the average monthly electricity consumption of the sampled households connected to the grid, a hybrid renewable energy based electrical supply system was designed for Gili Timur Island, one of the satellite islands around Bawean Island. The system was designed with the aid of a time step simulation software used to design and analyze hybrid power systems. A sensitivity analysis was also carried out on the optimum system to study the effects of variation in some of the system variables. HOMER suggests that for the expected peak load of 131 kW, an optimum system will consist of 150 kW from PV array, two wind turbines each rated 10 kW, a 75 kW diesel generator and batteries for storage.


Sign in / Sign up

Export Citation Format

Share Document