scholarly journals Combustion Behaviors of a Compression Ignition Engine Fuelled with Mosambipeel Blends Pyro oil using Ethyl Ether as an Additive

2019 ◽  
Vol 8 (4) ◽  
pp. 6045-6049

Diesel engines are principally employed in industries, transportation and agricultural fields because of their high efficiency and reliability. However, too much of smoke and nitric oxide emissions is one of the drawbacks. To regulate pollution and other negative effects of diesel engines, alternative fuels have come into existence. Ethanol produced from sugarcane in the biomass process is a recent example of it, due to its high octane number. But using raw ethanol is not a quality fuel for a solid ignition engine. It can be converted through a dehydration process to produce Diethyl Ether (DEE), which is an excellent compression-ignition fuel with a higher energy level than ethanol. DEE having a starting problem can’t be used directly in large amounts in diesel engines, but using it in small amounts is an advantage. This paper highlights the performance of blended pyrolysis oil with diesel fuel in the combination of DEE used in a mono cylinder four-stroke diesel engine. The pyrolysis process was used to extract the pyro oil from the Mosambi peel biomass. The oil has been extracted from Mosambi peel at the reaction temperature of 750˚C, in other words, the fast pyrolysis process. The study was conducted on composition of MDEE5 (5%MPPO+5%DEE+90D),MDEE10(10%MPPO+5%DEE+85% D) and MDEE15 (15% MPPO + 5%DEE + 80% D). Characteristics of the above combinations, MDEE5, MDEE10, and MDEE15 were analyzed and the properties like viscosity, density, flashpoint, fire point FTIR analysis of oils are also recorded. The blending of pyrolysis oil and DEE are mixed with diesel fuel with its volume. All the blended fuels were tested at 1500 rpm single-cylinder diesel engine. The maximum power output of brake thermal efficiency was recorded as 31.5% with MDEE5 as it was 30.0% with BD. The emission of smoke and NOx were considerably reduced

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7903
Author(s):  
István Péter Kondor ◽  
Máté Zöldy ◽  
Dénes Mihály

Due to the world’s growing population, the size of areas intended for food production in many countries of the world can only be achieved through severe environmental damage and deforestation, which has many other detrimental consequences in addition to accelerating global warming. By replacing the bio-content of fuels with other alternative fuels, land that is used for energy crops can also be used to grow food, thus mitigating the damaging effects of deforestation. Waste-based tire pyrolysis oil (TPO) can be a promising solution to replace the bio-proportion of diesel fuel. Since it is made from waste tires, it is also an optimal solution for recycling waste. This research shows the effect of different low-volume-percent tire pyrolyzed oil blended with diesel on the performance, fuel consumption, and emissions on a Mitsubishi S4S-DT industrial diesel engine. Four different premixed ratios of TPO were investigated (2.5%, 5%, 7.5% and 10%) as well as pyrolysis oil and 100% diesel oil; however, the following studies will only include the data from the pure diesel and the 10% TPO measurements. The experimental investigations were in an AVL electric dynamometer, the soot measurements were in an AVL (Anstalt für Verbrennungskraftmaschinen List) Micro soot sensor (MSS), and the emission measurements were in a AVL Furier-transform infrared spectroscopy (FTIR) taken. The scope of research was to investigate the effect of low volume percentage TPO on performance and emissions on a light-duty diesel engine.


Author(s):  
S. Murugan ◽  
G. Nagarajan

Many alternative fuels have been introduced in the fuel market in the recent years. But, still there is a lot of research work going on around the world in the conversion of waste substances into useful energy. Some of the researchers show a remarkable interest in using pyrolysis oil as an alternative fuel for diesel engines. Tire pyrolysis oil (TPO) from waste automobile tires has been found to be an energy source. It could be blended with diesel fuel and used as an alternative fuel for diesel engines. But, it cannot be used as the sole fuel in diesel engines due to its poor ignition quality. Diethyl ether (DEE) is a good ignition improver having a cetane number of more than 125. In the present investigation, two different blends of Tire pyrolysis oil and DEE (with addition of DEE at 0.5 and 1%) were used in a single cylinder four stroke water cooled direct injection diesel engine developing a rated power of 3.7 kW at 1500 rpm. The engine was able to run with 100% Tire pyrolysis oil with a maximum DEE addition of 1%. Results indicated that nitric oxide emission reduced by about 4% with an 8% increase in smoke emission at full load when the engine was fueled with TPO and 1% of DEE compared to that of diesel fuel operation. The brake thermal efficiency of the engine fueled with TPO-DEE blends was found to be lesser than that of diesel operation at full load. Brake specific energy consumption was also found to be higher with TPO DEE blends compared to that of diesel fuel operation. The results of the performance and emissions of the DI diesel engine are presented in this paper.


Author(s):  
Yuanjiang Pei ◽  
Marco Mehl ◽  
Wei Liu ◽  
Tianfeng Lu ◽  
William J. Pitz ◽  
...  

A mixture of n-dodecane and m-xylene is investigated as a diesel fuel surrogate for compression ignition (CI) engine applications. Compared to neat n-dodecane, this binary mixture is more representative of diesel fuel because it contains an alkyl-benzene which represents an important chemical class present in diesel fuels. A detailed multicomponent mechanism for n-dodecane and m-xylene was developed by combining a previously developed n-dodecane mechanism with a recently developed mechanism for xylenes. The xylene mechanism is shown to reproduce experimental ignition data from a rapid compression machine (RCM) and shock tube (ST), speciation data from the jet stirred reactor and flame speed data. This combined mechanism was validated by comparing predictions from the model with experimental data for ignition in STs and for reactivity in a flow reactor. The combined mechanism, consisting of 2885 species and 11,754 reactions, was reduced to a skeletal mechanism consisting 163 species and 887 reactions for 3D diesel engine simulations. The mechanism reduction was performed using directed relation graph (DRG) with expert knowledge (DRG-X) and DRG-aided sensitivity analysis (DRGASA) at a fixed fuel composition of 77% of n-dodecane and 23% m-xylene by volume. The sample space for the reduction covered pressure of 1–80 bar, equivalence ratio of 0.5–2.0, and initial temperature of 700–1600 K for ignition. The skeletal mechanism was compared with the detailed mechanism for ignition and flow reactor predictions. Finally, the skeletal mechanism was validated against a spray flame dataset under diesel engine conditions documented on the engine combustion network (ECN) website. These multidimensional simulations were performed using a representative interactive flame (RIF) turbulent combustion model. Encouraging results were obtained compared to the experiments with regard to the predictions of ignition delay and lift-off length at different ambient temperatures.


2015 ◽  
Vol 75 (8) ◽  
Author(s):  
Helmisyah Ahmad Jalaludin ◽  
Mohd Ruysdi Ramliy ◽  
Nik Rosli Abdullah ◽  
Salmiah Kasolang ◽  
Shahrir Abdullah ◽  
...  

The sudden increase in fuel prices due to diminishing petroleum resources and the pollution resulting from its use has resulted in research into alternative fuels such as biodiesel. In addition, the faster combustion and high temperature in the combustion chamber which results from petroleum diesel fuel leads to higher nitrogen oxide (NOx) and Particulate Matter (PM) emissions. Therefore, this research was conducted to investigate the effect of using palm oil methyl ester (POME) blends as alternative fuels on the performance and emission of a compression ignition engine. The performance of POME blends and diesel were compared by manipulating the load of the engine at 1800 rpm. The results obtained show that fuel consumption rate is higher for the POME blends compared to the diesel fuel and increases as the POME concentration increases. The increment of brake specific fuel consumption and the reduction of CO emission exhibit a relation to the increase in percentage of POME. This is mainly contributed by the higher oxygen content of POME which promotes complete combustion of the blends. However, efficient combustion from the blends as compared to diesel fuel resulted from higher oxygen content and cetane number leads to significant increase in exhaust temperature. This in turn increases NOx emissions since using POME blends is highly related to high temperature of combustion chamber. The experimental results proved that POME in compression ignition engine is a possible substitute to diesel.


Author(s):  
Michal Jukl ◽  
Petr Dostál ◽  
Jiří Čupera

This work is aimed on influence of diesel engine parameters that is used with mixture of gas and diesel fuel. The first part of the article describes diesel fuel systems where small part of diesel fuel is replaced by LPG or CNG fuel. These systems are often called as Diesel-Gas systems. Next part of the article focuses on tested car and measurement equipment. Measurement was performed by common-rail diesel engine in Fiat Doblň. Tests were carried out in laboratories of the Department of Engineering and Automobile Transport at the Mendel University in Brno. They were observed changes between emissions of used fuels – diesel without addition of gas, diesel + LPG and diesel + CNG mixture. It was found that that the addition of gas had positive effect on the performance parameters and emissions.


2019 ◽  
Vol 1 (2) ◽  
pp. 35-44
Author(s):  
Ramesh C ◽  
Murugesan A ◽  
Vijayakumar C

Diesel engines are widely used for their low fuel consumption and better efficiency. Fuel conservation, efficiency and emission control are always the investigation points in the view of researchers in developing energy system. India to search for a suitable environmental friendly alternative to diesel fuel. The regulated emissions from diesel engines are carbon monoxide (CO), Hydrocarbons (HC), NOx and Particulate matter. It creates cancer, lungs problems, headaches and physical and mental problems of human. This paper focuses on the substitution of fossil fuel diesel with renewable alternatives fuel such as Biodiesel. Biodiesel is much clear than fossil diesel fuel and it can be used in any diesel engine without major modification. The experiment was conducted in a single-cylinder four-stroke water-cooled 3.4 kW direct injection compression ignition engine fueled with non-edible Pungamia oil biodiesel blends. The experimental results proved that up to 40% of Pungamia oil biodiesel blends give better results compared to diesel fuel. The AVL 444 di-gas analyzer and AVL 437 smoke meter are used to measure the exhaust emissions from the engine. The observation of results, non-edible Pongamia biodiesel blended fuels brake thermal efficiency (3.59%) is improved and harmful emissions like CO, unburned HC, CO2, Particulate matter, soot particles, NOx and smoke levels are 29.67%, 26.65%, 33.47%, 39.57%, +/- 3.5 and 41.03% is decreased respectively compared to the diesel fuel. This is due to biodiesel contains the inbuilt oxygen content, ignition quality, carbon burns fully, less sulphur content, no aromatics, complete CO2 cycle.


2016 ◽  
Vol 9 (2) ◽  
pp. 97-101
Author(s):  
Biplab Das ◽  
Pradip Lingfa

The paper highlights the results of an experimental investigation carried out on Karanja oil as a supplementary for diesel fuel in Compression Ignition engine. In the present study, triglycerides of Karanja oil is converted into mono-ester (biodiesel) using based catalyst transesterfication process. Karanja biodiesel is blended with petroleum diesel in the volumetric proportions of 2−10%. Results reveal that the performance characteristics of Karanja biodiesel blends are well comparable with diesel fuel. The emission characteristics such as CO, HC and smoke are found to be lower for Karanja biodiesel blends at all the engine load conditions compared to diesel fuel. Hence, it is concluded that Karanja oil at lower blends can be used in diesel engine without any substantial engine modification.


Author(s):  
S. І. Kryshtopa ◽  
L. І. Kryshtopa ◽  
М. М. Hnyp ◽  
І. М. Mykytii

This article considers usage of blue-green algae as biomaterials for creation of motor biofuels. Proliferation of blue-green algae leads to water rotting, destruction of aquatic ecosystems and destruction of rivers and lakes that is why clearing of water bodies from blue-green algae is an urgent task. The object of the study is effect of blended biodiesel fuels from blue-green algae on the environmental and energy performances for the diesel engine. The purpose of the work is experimental study of changes of power and ecological characteristics of automobile diesel engines using petroleum diesel and their mixtures with biofuels derived from blue-green algae. Methods of research are experimental, laboratory ones. Laboratory researches were carried out on an experimental installation based on the serial diesel engine D21A1. As a result of performed experimental researches dependences of changing of the effective engine power on the use of diesel fuel and a mixture of diesel fuel with the received bioactive supplements based on methyl esters of the lipid fraction of blue-green algae Chroococcfles in the amount of 5, 10 and 20 % were established. It has been experimentally established that the effective power of an engine using a mixture of diesel fuel with the derived bioactive compounds based on methyl esters of the lipid fraction of blue-green algae Chroococcfles in the amount of 5, 10 and 20 % will decrease by an average of 0,9, 1,8 and 3,5 %. It has been experimentally determined that the content of carbon monoxide in the use of a mixture of diesel fuel with the derived bioactive compounds based on methyl esters of the lipid fraction of blue-green algae Chroococcfles in the amount of 5, 10 and 20 % will decrease by an average of 6,5, 13,9 and 28,7 %. The obtained results allow to optimize the choice of fuels for power systems of internal combustion engines and to reduce emissions of harmful substances in exhaust gases of automobile diesel engines.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Jean Paul Gram Shou ◽  
Marcel Obounou ◽  
Rita Enoh Tchame ◽  
Mahamat Hassane Babikir ◽  
Timoléon Crépin Kofané

Compression ignition engine modeling draws great attention due to its high efficiency. However, it is still very difficult to model compression ignition engine due to its complex combustion phenomena. In this work, we perform a theoretical study of steam injection being applied into a single-cylinder four-strokes direct-injection and naturally aspirated compression ignition engine running with diesel and biodiesel fuels in order to improve the performance and reduce NO emissions by using a two-zone thermodynamic combustion model. The results obtained from biodiesel fuel are compared with the ones of diesel fuel in terms of performance, adiabatic flame temperatures, and NO emissions. The steam injection method could decrease NO emissions and improve the engine performances. The results showed that the NO formation characteristics considerably decreased and the performance significantly increased with the steam injection method. The relative errors for computed nitric oxide concentration values of biodiesel fuel and diesel fuel in comparison to the measured ones are 2.8% and 1.6%, respectively. The experimental and theoretical results observed show the highly satisfactory coincidences.


Sign in / Sign up

Export Citation Format

Share Document