scholarly journals Analytical Method and Finite Element Method Wear of Disc Brake

This research focuses on wear of disc brake by method of analytical and finite element. An SUV car of DD6470C disk brake selected. Factors which considered as input parameters, such as the maximum allowable speed of the car as a constant throughout the work and by varying applied brake pressure. Analytical of the distribution of contact temperature along in the radial direction of disc brake caused by applied heat flux solved by using the separation of the variable method. Finite element simulation for contact pressure and von misses stress using; ANSYS workbench for the case of the structural analysis of disc brake was done by applying brake pressure and angular velocity. But, the thermal-structural, the maximum -contact temperature value of disc considered in addition. The contact pressure and von misses stresses were calculated analytically and ANSYS workbench results were presented in contour plot and numerically. The result shows that contact pressure, Von Misses stress and wear increased by increasing brake pressure in the case of the structure. And also parameters increase as increasing of both brake pressure and contact temperature of the disc in case of thermal-structural in all aspects like contact pressure, Von Misses and wear.

1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


2012 ◽  
Vol 268-270 ◽  
pp. 737-740
Author(s):  
Yang Yu ◽  
Yi Hua Dou ◽  
Fu Xiang Zhang ◽  
Xiang Tong Yang

It is necessary to know the connecting and sealing ability of premium connection for appropriate choices of different working conditions. By finite element method, the finite element model of premium connection is established and the stresses of seal section, shoulder zone and thread surface of tubing by axial tensile loads are analyzed. The results show that shoulder zone is subject to most axial stresses at made-up state, which will make distribution of stresses on thread reasonable. With the increase of axial tensile loads, stresses of thread on both ends increase and on seal section and shoulder zone slightly change. The maximum stress on some thread exceed the yield limit of material when axial tensile loads exceed 400KN. Limited axial tensile loads sharply influence the contact pressures on shoulder zone while slightly on seal section. Although the maximum contact pressure on shoulder zone drop to 0 when the axial tensile load is 600KN, the maximum contact pressure on seal section will keep on a high level.


Author(s):  
Chris Alexander ◽  
Wade Armer ◽  
Stuart Harbert

KOCH Heat Transfer Company contracted Stress Engineering Services, Inc. to perform a design/parameter study of a return bonnet used in hairpin heat exchangers that employs an elliptical flange design. The return bonnet is an important component of the heat exchanger as it can be removed to permit inspection of the heat exchanger tubes. The return bonnet is bolted to the hairpin leg flange. To maintain sealing integrity a gasket is placed between the return bonnet flange and the hairpin leg flange. The sealing efficiency of two return bonnet sizes (24-inch and 30-inch) was investigated in this study using finite element analysis. The sealing efficiency is an indication of how the contact pressure changes circumferentially around the gasket and is calculated by dividing the local contact pressure by the maximum contact pressure calculated in the gasket for each respective design. The study assessed the effects of geometric changes to the mating flanges. Using an iterative design process using finite element analysis, the elliptical flanges were optimized to maximize sealing efficiency. Upon completion of the study, the manufacturer successfully employed the modifications as evidenced with multiple successful hydrotests.


2008 ◽  
Vol 32 (3-4) ◽  
pp. 439-452 ◽  
Author(s):  
David Anderson ◽  
Andrew Warkentin ◽  
Robert Bauer

This work uses validated 2D and 3D finite element models of the creep-feed grinding operation to study the effects of face cooling on the workpiece temperatures. The results show that as the intensity of the face cooling is increased the maximum contact temperature decreases and the location of the maximum contact temperature shifts away from the finished workpiece material and towards the uncut workpiece surface. The finite element models are also used to study the maximum temperatures along the workpiece during a complete grinding pass. The temperature profiles show that there are four important temperature features on the workpiece, which are the cut-in, steady-state, temperature spike, and cut-out zones. Cut-in occurs when the grinding wheel initially engages the workpiece, steady-state occurs in the middle of the workpiece, the temperature spike occurs at the beginning of cut-out, and cut-out occurs as the grinding wheel disengages from the workpiece. Finally, the results show that face cooling need only be applied to the area immediately adjacent to the contact zone to be effective and that there is very little benefit to applying coolant to the entire front and back workpiece faces.


2012 ◽  
Vol 215-216 ◽  
pp. 1105-1110 ◽  
Author(s):  
Xiong Guo ◽  
Lv Long Zou ◽  
Bing Lu ◽  
Shi Liang Zhang ◽  
Xing Ren Su ◽  
...  

The connection performance of the large taper, multi-thread, variable pitch of screw threaded casing is researched by 3D finite element simulation on ANSYS Workbench. The 3D finite element model is created precisely. The stress distribution on the teeth of three kind variable pitch of screw threaded structure is studied by using the static structure of the contact analysis module. Contrasting stress distribution of the variable pitch of screw with of the equal pitch of screw under the same working condition, it is validated that design principle for the variable pitch of screw connection is correct. The influence of changes in the amount of variable pitch of screw to the whole stress distribution on teeth is discussed. The results show that the force distribution on the teeth of the variable pitch of screw connection is more uniform than equal pitch of screw, and will improve the overall carrying capacity. This study has its practical value to improve the connective performance of the threaded casing and enhance the product quality of threaded casing.


2013 ◽  
Vol 380-384 ◽  
pp. 64-68
Author(s):  
Xin Ze Zhao ◽  
Rui Feng Wang ◽  
Jie Wang ◽  
Mei Yun Zhao

The 3d model of miter gate has been set up based on skeleton model of Pro/E, and it has been imported into ANSYS Workbench module for static structure analysis and modal analysis. In the process of finite element simulation, the rotational constraints has been imposed on the top and bottom pivot according to the actual operation situation of the miter gate, and obtain the first several order frequencies and corresponding modal vibration mode of the miter gate, which can show the hydrodynamic vibration stress and strain distribution. According to the results of the finite element simulation analysis, the prototype vibration test of the miter gate has been done. The test results show that the vibration amplitude and the stress and strain distribution of each part of the miter gate are corresponding to the vibration test.


Author(s):  
Louay S. Yousuf ◽  
Yaakob K. H. Dabool

Abstract The bending deflection of the disc cam profile and the dynamic response of the follower were discussed and analyzed for three paths of contact. The objective of this paper was to study the influence of maximum contact pressure on the bending deflection of the cam profile. Numerical simulation was carried out using SolidWorks Software to simulate the follower displacement, velocity and acceleration. Finite element analysis was used taking into account the use of ANSYS package to calculate the bending deflection. The experiment setup had been done through an infrared camera device. The bending deflection of point (18) is bigger than the bending deflection of point (4) because of the bigness of radius of curvature of nose (2).


2021 ◽  
Vol 105 ◽  
pp. 211-220
Author(s):  
Bei Li ◽  
Xiao Jun Zuo ◽  
Xiang Gao

In this paper, the structural strain of the beam shear stress sensor is optimized, and the average strain of the strain sensor is simulated by Ansys Workbench. Firstly, the mathematic model of the beam sensor is established, and the stress and strain of the model are analyzed theoretically. Secondly, the finite element modeling of the sensor is carried out, and the finite element simulation of Ansys Workbench is carried out. The key dimensions of strain measurement are studied by parameter driven. Then the simulation results show that the effect of the production patch error on the output is quantitatively analyzed. Finally, the feasibility of mathematical model theory and finite element simulation is verified by calibration experiment.


2013 ◽  
Vol 655-657 ◽  
pp. 502-505
Author(s):  
Rui Cheng Feng ◽  
Hao Xu ◽  
Zhi Yuan Rui ◽  
Hai Yan Li ◽  
Bao Cheng Zhou

Focusing on the problem of accuracy machining to the friction welder,taking the spindle box of friction welder as the research object,the finite element simulation software of ANSYS workbench is applied to the static analysis of the box ,then the stress and strain response can be available. And through the using of sensitivity analysis optimization scheme is proposed ,which prerequisite basis is obtained for the optimization design and the improvement of breed to the spindle box of large friction welder


Sign in / Sign up

Export Citation Format

Share Document