scholarly journals Hydrodynamic Features of Mukhrani Artesian Basin

Author(s):  
Avtandil Jgamadze ◽  

The article contains a description of the hydrodynamic features of the Mukhran artesian basin and a generalization of the hydrogeological conditions. Based on the results of experimental filtration studies carried out in the wells of existing water intakes, the hydrodynamic parameters of pressure aquifers were determined, according to which a map of the permeability of aquifers of the Quaternary period was compiled. The peculiarities of changes in water conductivity indicators formed the basis of isolated hydrodynamic zones, which is a clear expression of the filtration structure of the Mukhran artesian basin, in terms of the distribution of pressurized groundwater resources.

2019 ◽  
Vol 28 (1) ◽  
pp. 175-192
Author(s):  
Phil Hayes ◽  
Chris Nicol ◽  
Andrew D. La Croix ◽  
Julie Pearce ◽  
Sebastian Gonzalez ◽  
...  

AbstractThe Precipice Sandstone is a major Great Artesian Basin aquifer in the Surat Basin, Queensland, Australia, which is used for water supply and production of oil and gas. This report describes use of observed groundwater pressure responses to managed aquifer recharge (MAR) at a regional scale to test recent geological descriptions of Precipice Sandstone extent, and to inform its hydrogeological conceptualisation. Since 2015, two MAR schemes have injected over 20 GL of treated water from coal seam gas production into the Precipice Sandstone, with pressure responses rapidly propagating over 100 km, indicating high aquifer diffusivity. Groundwater modelling of injection and inversion of pressure signals using PEST software shows the spatial variability of aquifer properties, and indicates that basin in-situ stresses and faulting exert control on permeability. Extremely high permeability, up to 200 m/day, occurs in heavily fractured regions with a dual-porosity flow regime. The broader-scale estimates of permeability approach an order of magnitude higher than previous studies, which has implications for the management of water resources in the Precipice Sandstone. Results also show the Precipice Sandstone to have broadly isotropic permeability. The results also support a recent geological interpretation of the Precipice Sandstone as having more limited lateral extent than initially considered. The study shows the effective use of MAR injection data to improve geological and hydrogeological understanding through groundwater model inversion. It also demonstrates the utility of combining hydrogeological and reservoir-engineer datasets in areas explored and developed for both groundwater resources and oil and gas resources.


2017 ◽  
Vol 6 (2) ◽  
Author(s):  
Stefano Bernardinetti ◽  
Stefano Maraio ◽  
Pier Paolo Gennaro Bruno ◽  
Valentina Cicala ◽  
Serena Minucci ◽  
...  

The need to obtain a detailed hydrogeological characterization of the subsurface and its interpretation for the groundwater resources management, often requires to apply several and complementary geophysical methods. The goal of the approach in this paper is to provide a unique model of the aquifer by synthesizing and optimizing the information provided by several geophysical methods. This approach greatly reduces the degree of uncertainty and subjectivity of the interpretation by exploiting the different physical and mechanic characteristics of the aquifer. The studied area, into the municipality of Laterina (Arezzo, Italy), is a shallow basin filled by lacustrine and alluvial deposits (Pleistocene and Olocene epochs, Quaternary period), with alternated silt, sand with variable content of gravel and clay where the bottom is represented by arenaceous-pelitic rocks (Mt. Cervarola Unit, Tuscan Domain, Miocene epoch). This shallow basin constitutes the unconfined superficial aquifer to be exploited in the nearly future. To improve the geological model obtained from a detailed geological survey we performed electrical resistivity and P wave refraction tomographies along the same line in order to obtain different, independent and integrable data sets. For the seismic data also the reflected events have been processed, a remarkable contribution to draw the geologic setting. Through the k-means algorithm, we perform a cluster analysis for the bivariate data set to individuate relationships between the two sets of variables. This algorithm allows to individuate clusters with the aim of minimizing the dissimilarity within each cluster and maximizing it among different clusters of the bivariate data set. The optimal number of clusters “K”, corresponding to the individuated geophysical facies, depends to the multivariate data set distribution and in this work is estimated with the Silhouettes. The result is an integrated tomography that shows a finite number of homogeneous geophysical facies, which therefore permits to distinguish and interpret the porous aquifer in a quantitative and objective way.


2017 ◽  
Author(s):  
Charlotte P. Iverach ◽  
Dioni I. Cendón ◽  
Karina T. Meredith ◽  
Klaus M. Wilcken ◽  
Stuart I. Hankin ◽  
...  

Abstract. Understanding pathways of recharge to alluvial aquifers is important for maintaining sustainable access to groundwater resources. Water balance modelling is often used to proportion recharge components and guide sustainable groundwater allocations. However, it is not common practice to use hydrochemical evidence to inform and constrain these models. Here we compare geochemical versus water balance model estimates of artesian discharge into an alluvial aquifer, and demonstrate why multi-tracer geochemical analyses should be used as a critical component of water budget assessments. We selected a site in Australia where the Great Artesian Basin (GAB), the largest artesian basin in the world, discharges into the Lower Namoi Alluvium (LNA), an extensively modelled aquifer, to convey the utility of our approach. Water stable isotopes (ẟ18O and ẟ2H) and the concentrations of Na+ and HCO3− suggest a continuum of mixing in the alluvial aquifer between the GAB (artesian component) and surface recharge, whilst isotopic tracers (3H, 14C and 36Cl) indicate that the alluvial groundwater is a mixture of groundwaters with residence times of


Author(s):  
A.A. Balobanenko ◽  
◽  
D.I. Vasiliev ◽  
A.S. Manukhina ◽  
◽  
...  

The natural conditions for the formation of the hydrogeodynamic regime of groundwater are characteristic of most of the Siberian Federal District and are determined by landscape and climatic factors, features of the geological structure, hydrogeological conditions, and geocryogenic conditions of the territory.


2016 ◽  
Vol 17 (2) ◽  
pp. 324-341 ◽  
Author(s):  
Jiabao Yan ◽  
Shaofeng Jia ◽  
Aifeng Lv ◽  
Rashid Mahmood ◽  
Wenbin Zhu

The Great Artesian Basin (GAB) in Australia, the largest artesian basin in the world, is rich in groundwater resources. This study analyzed the spatio-temporal characteristics of terrestrial water storage (TWS) in the GAB for 2003–2014 using satellite (Gravity Recovery and Climate Experiment, GRACE) data, hydrological models’ outputs, and in situ data. A slight increase in TWS was observed for the study period. However, there was a rapid increase in TWS in 2010 and 2011 due to two strong La Nina events. Long-term mean monthly TWS changes showed remarkable agreements with net precipitation. Both GRACE derived and in situ groundwater disclosed similar trend patterns. Groundwater estimated from the PCR-GLOBWB model contributes 26.8% (26.4% from GRACE) to the total TWS variation in the entire basin and even more than 50% in the northern regions. Surface water contributes only 3% to the whole basin but more than 60% to Lake Eyre and the Cooper River. Groundwater, especially deeper than 50 meters, was insensitive to climate factors (i.e., rainfall). Similarly, the groundwater in the northern Cape York Peninsula was influenced by some other factors rather than precipitation. The time-lagged correlation analysis between sea surface height and groundwater storage indicated certain correlations between groundwater and sea level changes.


Author(s):  
Avtandil Jgamadze ◽  

The Mukhrani artesian basin is a reservoir containing high quality groundwater. Well-known aquifers and galleries are located within the artesian basin, which are one of the main sources of drinking and household water supply for the city of Tbilisi. The article summarizes the hydrogeological conditions of the Mukhrani artesian basin. The hydrogeological parameters of the productive aquifer were determined based on the results of studies carried out at the existing water intakes. A hydrodynamic map of the artesian basin was compiled. The spatial and quantitative distribution of groundwater resources in the basin has been estimated. Established dynamic (natural) resources and static (natural) reserves of groundwater.


Sign in / Sign up

Export Citation Format

Share Document