scholarly journals EphrinB-EphB Signaling Induces Hyperalgesia through ERK5/CREB Pathway in Rats

2017 ◽  
Vol 4 (20;4) ◽  
pp. E563-E574
Author(s):  
Min Yan

Background: There are numerous studies implicating that EphB receptors and ephrinB ligands play important roles in modulating the transduction of spinal nociceptive information. EphrinB-EphB signaling may contribute to hyperalgesia via various kinds of downstream molecules, the mechanisms of which have not been completely understood. Objective: The aim of the present study was to identify whether ephrinB-EphB signaling could contribute to hyperalgesia through ERK5/CREB pathway. Study Design: Controlled animal study. Setting: University laboratory. Methods: This study attempted to detect the changes of pain behaviors and the protein level of p-ERK5 and p-CREB by activating EphB receptors in the spinal cord of rats. To further confirm our hypothesis, we designed LV-siRNA for knockdown of spinal ERK5. When ERK5 was inhibited, we recorded the changes of spinal p-CREB expression and the pain behaviors of rats after activating EphB receptors. We also confirmed this conclusion in rat CCI model. Statistical analyses were performed using GraphPad Prism 5. Results: Intrathecal injection of ephrinB2-Fc in rats evoked thermal hyperalgesia and mechanical allodynia, along with activation of ERK5 and CREB in the spinal cord. Knockdown of ERK5 inhibited ephrinB2-Fc-induced CREB activation and hyperalgesia. Blocking EphB receptors prevented CCI-induced neuropathic pain and spinal ERK5/CREB activation. Limitations: More underlying mechanisms that underlie the relationship between ephrinBEphB signaling and ERK5/CREB pathway will need to be explored in future studies. Conclusions: Our study suggests that ERK5/CREB pathway plays important roles in the transduction of nociceptive information associated with ephrinB-EphB signaling. This study provides further understanding of the downstream mechanisms of ephrinB-EphB signaling and helps to explore new targets for treating pathological pain. Key words: EphrinB-EphB signaling, MAPK, ERK5, CREB, hyperalgesia, pain, CCI, NMDA

2016 ◽  
pp. 145-153 ◽  
Author(s):  
H. WEI ◽  
Y. WEI ◽  
F. TIAN ◽  
T. NIU ◽  
G. YI

Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Especially, neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effectively therapeutic agents and treatment strategies. Proteinase-activated receptors (PARs) are a family member of G-protein-coupled receptors and are activated by a proteolytic mechanism. One of its subtypes PAR2 has been reported to be engaged in mechanical and thermal hyperalgesia. Thus, in this study we specifically examined the underlying mechanisms responsible for SCI evoked-neuropathic pain in a rat model. Overall, we demonstrated that SCI increases PAR2 and its downstream pathways TRPV1 and TRPA1 expression in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal PAR2 by intrathecal injection of FSLLRY-NH2 significantly inhibits neuropathic pain responses induced by mechanical and thermal stimulation whereas FSLLRY-NH2 decreases the protein expression of TRPV1 and TRPA1 as well as the levels of substance P and calcitonin gene-related peptide. Results of this study have important implications, i.e. targeting one or more of these signaling molecules involved in activation of PAR2 and TRPV1/TRPA1 evoked by SCI may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.


2021 ◽  
Vol 15 ◽  
Author(s):  
Ying Huang ◽  
Bo Jiao ◽  
Bo Zhu ◽  
Bingrui Xiong ◽  
Pei Lu ◽  
...  

It has been well recognized that exposure to chronic stress could increase pain responding and exacerbate pain symptoms, resulting in stress-induced hyperalgesia. However, the mechanisms underlying stress-induced hyperalgesia are not yet fully elucidated. To this end, we observed that restraint as a stressful event exacerbated mechanical and thermal hyperalgesia, accompanied with up-regulation of nitric oxide (NO) (P < 0.001), GTP cyclohydrolase 1 (GCH1) (GCH1 mRNA: P = 0.001; GCH1 protein: P = 0.001), and tetrahydrobiopterin (BH4) concentration (plasma BH4: P < 0.001; spinal BH4: P < 0.001) on Day 7 in restraint stress (RS) rats. Intrathecal injection of Nω-nitro-L-arginine methyl ester (L-NAME), a non-specific NO synthase inhibitor, or N-([3-(aminomethyl)phenyl]methyl) ethanimidamide, a special inhibitor of inducible NO synthase (iNOS), for seven consecutive days attenuated stress-induced hyperalgesia and decreased the production of NO (P < 0.001). Interestingly, 7-nitro indazole, a special inhibitor of neuronal NO synthase, alleviated stress-induced hyperalgesia but did not affect spinal NO synthesis. Furthermore, intrathecal injection of BH4 not only aggravated stress-induced hyperalgesia but also up-regulated the expression of spinal iNOS (iNOS mRNA: P = 0.015; iNOS protein: P < 0.001) and NO production (P < 0.001). These findings suggest that hyperalgesia induced by RS is associated with the modulation of the GCH1–BH4 system and constitutively expressed spinal iNOS. Thus, the GCH1–BH4–iNOS signaling pathway may be a new novel therapeutic target for pain relief in the spinal cord.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Achmad Fahmi ◽  
Yunus Kuntawi Aji ◽  
Dirga Rachmad Aprianto ◽  
Akbar Wido ◽  
Asadullah Asadullah ◽  
...  

Background: Peripheral glucocorticoid receptors (GRs) are altered by peripheral nerve injury and may modulate the development of neuropathic pain. Two central pathogenic mechanisms underlying neuropathic pain are neuroinflammation and N-methyl-D-aspartate receptor (NMDAR)-dependent neural plasticity in the spinal cord. Objectives: This study examined the effect of the non-competitive NMDAR antagonist dextromethorphan on partial sciatic nerve ligation (PSL)-induced neuropathic pain and the spinal expression of the glucocorticoid receptor (GR). Methods: Male mice were randomly assigned into a sham group and two groups receiving PSL followed by intrathecal saline vehicle or dextromethorphan (iDMP). Vehicle or iDMP was administered 8 - 14 days after PSL. The hotplate paw-withdrawal latency was considered to measure thermal pain sensitivity. The spinal cord was then sectioned and immunostained for GR. Results: Thermal hyperalgesia developed similarly in the vehicle and iDMP groups prior to the injections (P = 0.828 and 0.643); however, it was completely mitigated during the iDMP treatment (P < 0.001). GR expression was significantly higher in the vehicle group (55.64 ± 4.50) than in the other groups (P < 0.001). The iDMP group (9.99 ± 0.66) showed significantly higher GR expression than the sham group (6.30 ± 1.96) (P = 0.043). Conclusions: The suppression of PLS-induced thermal hyperalgesia by iDMP is associated with the downregulation of GR in the spinal cord, suggesting that this analgesic effect is mediated by inhibiting GR-regulated neuroinflammation.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Kelly M Smith ◽  
Tyler J Browne ◽  
Olivia C Davis ◽  
A Coyle ◽  
Kieran A Boyle ◽  
...  

Nociceptive information is relayed through the spinal cord dorsal horn, a critical area in sensory processing. The neuronal circuits in this region that underpin sensory perception must be clarified to better understand how dysfunction can lead to pathological pain. This study used an optogenetic approach to selectively activate spinal interneurons that express the calcium-binding protein calretinin (CR). We show that these interneurons form an interconnected network that can initiate and sustain enhanced excitatory signaling, and directly relay signals to lamina I projection neurons. Photoactivation of CR interneurons in vivo resulted in a significant nocifensive behavior that was morphine sensitive, caused a conditioned place aversion, and was enhanced by spared nerve injury. Furthermore, halorhodopsin-mediated inhibition of these interneurons elevated sensory thresholds. Our results suggest that dorsal horn circuits that involve excitatory CR neurons are important for the generation and amplification of pain and identify these interneurons as a future analgesic target.


2010 ◽  
Vol 112 (5) ◽  
pp. 1234-1249 ◽  
Author(s):  
Jia-Ping Ruan ◽  
Hong-Xing Zhang ◽  
Xian-Fu Lu ◽  
Yue-Peng Liu ◽  
Jun-Li Cao

Background Our previous studies have demonstrated that EphBs receptors and ephrinBs ligands were involved in modulation of spinal nociceptive information. However, the downstream mechanisms that control this process are not well understood. The aim of this study was to further investigate whether mitogen-activated protein kinases (MAPKs), as the downstream effectors, participate in modulation of spinal nociceptive information related to ephrinBs/EphBs. Methods Thermal hyperalgesia and mechanical allodynia were measured using radiant heat and von Frey filaments test. Immunofluorescence staining was used to detect the expression of p-MAPKs and of p-MAPKs/neuronal nuclei, or p-MAPKs/glial fibrillary acidic protein double label. C-Fos expression was determined by immunohistochemistry. The expression of p-MAPKs was also determined by Western blot assay. Results Intrathecal injection of ephrinB1-Fc produced a dose- and time-dependent thermal and mechanical hyperalgesia, accompanied by the increase of spinal p-MAPKs and c-Fos expression. Immunofluorescence staining revealed that p-MAPKs colocalized with the neuronal marker (neuronal nuclei) and the astrocyte marker (glial fibrillary acidic protein). Inhibition of MAPKs prevented and reversed pain behaviors and the increase of spinal c-Fos expression induced by intrathecal injection of ephrinB1-Fc. Inhibition of EphBs receptors by intrathecal injection of EphB1-Fc reduced formalin-induced inflammation and chronic constrictive injury-induced neuropathic pain behaviors accompanied by decreased expression of spinal p-MAPKs and c-Fos protein. Furthermore, pretreatment with MK-801, an N-methyl-d-aspartate receptor antagonist, prevented behavioral hyperalgesia and activation of spinal MAPKs induced by intrathecal injection of ephrinB1-Fc. Conclusions These results demonstrated that activation of MAPKs contributed to modulation of spinal nociceptive information related to ephrinBs/EphBs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengnan Zhao ◽  
Xiaojiao Zhang ◽  
Xueshu Tao ◽  
Bohan Zhang ◽  
Cong Sun ◽  
...  

Reduction in Nrf2-mediated antioxidant response in the central nervous system plays an important role in the development and maintenance of neuropathic pain (NP). However, the mechanisms regulating Nrf2 activity in NP remain unclear. A recent in vitro study revealed that Sirt2, a member of the sirtuin family of proteins, affects antioxidant capacity by modulating Nrf2 activity. Here we examined whether central Sirt2 regulates NP through Nrf2-mediated oxidative stress pathway. In a rat model of spared nerve injury (SNI)-induced NP, mechanical allodynia and thermal hyperalgesia were observed on day 1 and up to day 14 post-SNI. The expression of Sirt2, Nrf2 and its target gene NQO1 in the spinal cord in SNI rats, compared with sham rats, was significantly decreased from day 7 and remained lower until the end of the experiment (day 14). The mechanical allodynia and thermal hyperalgesia in SNI rats were ameliorated by intrathecal injection of Nrf2 agonist tBHQ, which normalized expression of Nrf2 and NQO1 and reversed SNI-induced decrease in antioxidant enzyme superoxide dismutase (SOD) and increase in oxidative stress marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the spinal cord. Moreover, intrathecal injection of a recombinant adenovirus expressing Sirt2 (Ad-Sirt2) that upregulated expression of Sirt2, restored expression of Nrf2 and NQO1 and attenuated oxidative stress in the spinal cord, leading to improvement of thermal hyperalgesia and mechanical allodynia in SNI rats. These findings suggest that peripheral nerve injury downregulates Sirt2 expression in the spinal cord, which inhibits Nrf2 activity, leading to increased oxidative stress and the development of chronic NP.


2019 ◽  
Author(s):  
KM Smith ◽  
TJ Browne ◽  
O Davis ◽  
A Coyle ◽  
KA Boyle ◽  
...  

AbstractThe passage of nociceptive information is relayed through the spinal cord dorsal horn, a critical area in sensory processing. The neuronal circuits in this region that underpin sensory perception must be clarified to better understand how dysfunction can lead to pathological pain. This study used an optogenetic approach to selectively activate neurons that contain the calcium-binding protein calretinin (CR). We show that CR+ interneurons form an interconnected network that can initiate and sustain enhanced excitatory signaling, and directly relays signals to lamina I projection neurons. In vivo photoactivation of CR+ interneurons resulted in a significant nocifensive behavior that was morphine sensitive and cause a conditioned place aversion. Furthermore, halorhodopsin-mediated inhibition of CR+ interneurons elevated sensory thresholds. These results suggest that neuronal circuits in the superficial dorsal horn that involve excitatory CR+ neurons are important for the generation and amplification of pain, and identify these interneurons as a future analgesic target.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 864
Author(s):  
Christopher L. Cioffi

Among the myriad of cellular and molecular processes identified as contributing to pathological pain, disinhibition of spinal cord nociceptive signaling to higher cortical centers plays a critical role. Importantly, evidence suggests that impaired glycinergic neurotransmission develops in the dorsal horn of the spinal cord in inflammatory and neuropathic pain models and is a key maladaptive mechanism causing mechanical hyperalgesia and allodynia. Thus, it has been hypothesized that pharmacological agents capable of augmenting glycinergic tone within the dorsal horn may be able to blunt or block aberrant nociceptor signaling to the brain and serve as a novel class of analgesics for various pathological pain states. Indeed, drugs that enhance dysfunctional glycinergic transmission, and in particular inhibitors of the glycine transporters (GlyT1 and GlyT2), are generating widespread interest as a potential class of novel analgesics. The GlyTs are Na+/Cl−-dependent transporters of the solute carrier 6 (SLC6) family and it has been proposed that the inhibition of them presents a possible mechanism by which to increase spinal extracellular glycine concentrations and enhance GlyR-mediated inhibitory neurotransmission in the dorsal horn. Various inhibitors of both GlyT1 and GlyT2 have demonstrated broad analgesic efficacy in several preclinical models of acute and chronic pain, providing promise for the approach to deliver a first-in-class non-opioid analgesic with a mechanism of action differentiated from current standard of care. This review will highlight the therapeutic potential of GlyT inhibitors as a novel class of analgesics, present recent advances reported for the field, and discuss the key challenges associated with the development of a GlyT inhibitor into a safe and effective agent to treat pain.


2021 ◽  
Vol 17 ◽  
pp. 174480692110066
Author(s):  
Orest Tsymbalyuk ◽  
Volodymyr Gerzanich ◽  
Aaida Mumtaz ◽  
Sanketh Andhavarapu ◽  
Svetlana Ivanova ◽  
...  

Background Neuropathic pain following peripheral nerve injury (PNI) is linked to neuroinflammation in the spinal cord marked by astrocyte activation and upregulation of interleukin 6 (IL -6 ), chemokine (C-C motif) ligand 2 (CCL2) and chemokine (C-X-C motif) ligand 1 (CXCL1), with inhibition of each individually being beneficial in pain models. Methods Wild type (WT) mice and mice with global or pGfap-cre- or pGFAP-cre/ERT2-driven Abcc8/SUR1 deletion or global Trpm4 deletion underwent unilateral sciatic nerve cuffing. WT mice received prophylactic (starting on post-operative day [pod]-0) or therapeutic (starting on pod-21) administration of the SUR1 antagonist, glibenclamide (10 µg IP) daily. We measured mechanical and thermal sensitivity using von Frey filaments and an automated Hargreaves method. Spinal cord tissues were evaluated for SUR1-TRPM4, IL-6, CCL2 and CXCL1. Results Sciatic nerve cuffing in WT mice resulted in pain behaviors (mechanical allodynia, thermal hyperalgesia) and newly upregulated SUR1-TRPM4 in dorsal horn astrocytes. Global and pGfap-cre-driven Abcc8 deletion and global Trpm4 deletion prevented development of pain behaviors. In mice with Abcc8 deletion regulated by pGFAP-cre/ERT2, after pain behaviors were established, delayed silencing of Abcc8 by tamoxifen resulted in gradual improvement over the next 14 days. After PNI, leakage of the blood-spinal barrier allowed entry of glibenclamide into the affected dorsal horn. Daily repeated administration of glibenclamide, both prophylactically and after allodynia was established, prevented or reduced allodynia. The salutary effects of glibenclamide on pain behaviors correlated with reduced expression of IL-6, CCL2 and CXCL1 by dorsal horn astrocytes. Conclusion SUR1-TRPM4 may represent a novel non-addicting target for neuropathic pain.


Sign in / Sign up

Export Citation Format

Share Document