scholarly journals The Effect of Intrathecal Injection of Dextromethorphan on the Experimental Neuropathic Pain Model

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Achmad Fahmi ◽  
Yunus Kuntawi Aji ◽  
Dirga Rachmad Aprianto ◽  
Akbar Wido ◽  
Asadullah Asadullah ◽  
...  

Background: Peripheral glucocorticoid receptors (GRs) are altered by peripheral nerve injury and may modulate the development of neuropathic pain. Two central pathogenic mechanisms underlying neuropathic pain are neuroinflammation and N-methyl-D-aspartate receptor (NMDAR)-dependent neural plasticity in the spinal cord. Objectives: This study examined the effect of the non-competitive NMDAR antagonist dextromethorphan on partial sciatic nerve ligation (PSL)-induced neuropathic pain and the spinal expression of the glucocorticoid receptor (GR). Methods: Male mice were randomly assigned into a sham group and two groups receiving PSL followed by intrathecal saline vehicle or dextromethorphan (iDMP). Vehicle or iDMP was administered 8 - 14 days after PSL. The hotplate paw-withdrawal latency was considered to measure thermal pain sensitivity. The spinal cord was then sectioned and immunostained for GR. Results: Thermal hyperalgesia developed similarly in the vehicle and iDMP groups prior to the injections (P = 0.828 and 0.643); however, it was completely mitigated during the iDMP treatment (P < 0.001). GR expression was significantly higher in the vehicle group (55.64 ± 4.50) than in the other groups (P < 0.001). The iDMP group (9.99 ± 0.66) showed significantly higher GR expression than the sham group (6.30 ± 1.96) (P = 0.043). Conclusions: The suppression of PLS-induced thermal hyperalgesia by iDMP is associated with the downregulation of GR in the spinal cord, suggesting that this analgesic effect is mediated by inhibiting GR-regulated neuroinflammation.

2016 ◽  
pp. 145-153 ◽  
Author(s):  
H. WEI ◽  
Y. WEI ◽  
F. TIAN ◽  
T. NIU ◽  
G. YI

Spinal cord injury (SCI) is an extremely serious type of physical trauma observed in clinics. Especially, neuropathic pain resulting from SCI has a lasting and significant impact on most aspects of daily life. Thus, a better understanding of the molecular pathways responsible for the cause of neuropathic pain observed in SCI is important to develop effectively therapeutic agents and treatment strategies. Proteinase-activated receptors (PARs) are a family member of G-protein-coupled receptors and are activated by a proteolytic mechanism. One of its subtypes PAR2 has been reported to be engaged in mechanical and thermal hyperalgesia. Thus, in this study we specifically examined the underlying mechanisms responsible for SCI evoked-neuropathic pain in a rat model. Overall, we demonstrated that SCI increases PAR2 and its downstream pathways TRPV1 and TRPA1 expression in the superficial dorsal horn of the spinal cord. Also, we showed that blocking spinal PAR2 by intrathecal injection of FSLLRY-NH2 significantly inhibits neuropathic pain responses induced by mechanical and thermal stimulation whereas FSLLRY-NH2 decreases the protein expression of TRPV1 and TRPA1 as well as the levels of substance P and calcitonin gene-related peptide. Results of this study have important implications, i.e. targeting one or more of these signaling molecules involved in activation of PAR2 and TRPV1/TRPA1 evoked by SCI may present new opportunities for treatment and management of neuropathic pain often observed in patients with SCI.


2020 ◽  
Vol 19 (8) ◽  
pp. 1591-1597
Author(s):  
Yongqiang Lin ◽  
Mengjia Li ◽  
Gaofeng Rao ◽  
Wenfu Zhang ◽  
Xuyan Chen

Purpose: To investigate the effect of miR-665 in neuropathic pain and the possible molecular mechanism involved.Methods: A neuropathic pain model was established using chronic constriction injury (CCI) methods in Sprague Dawley (SD) rats. Mechanical and thermal hyperalgesia were measured using paw withdrawal threshold (PWT) and paw withdrawal latency (PWL), respectively. The inflammation response was determined by assessing the production of inflammation factors. The target relationship of miR-665 and suppressor of cytokine signaling 1 (SOCS1) was verified by luciferase assay.Results: In the CCI rat model, PWT and PWL decreased following treatment with miR-665 (p < 0.01). MiR-665 was elevated in the spinal cord and microglia of CCI rats at different time points (p < 0.01). Down-regulation of miR-665 increased PWT and PWL and inhibited the production of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in CCI rats (p < 0.01). Luciferase assay results indicate that SOCS1 was the target of miR-665 (p < 0.01). SOCS1 decreased in CCI rats (p < 0.01) after treatment with miR-665. MiR-665 negatively regulated the expression of SOCS1 (p < 0.01). Down-regulation of SOCS1 reversed the alleviating effect of decreased miR-665 on pain sensitivity and inflammationresponse (p < 0.01).Conclusion: Down-regulation of miR-665 alleviates neuropathic pain by targeting SOCS1, and hence making miR-665 a promising therapeutic target for neuropathic pain. Keywords: MiR-665, SOCS1, Neuropathic pain, CCI, Spinal cord


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengnan Zhao ◽  
Xiaojiao Zhang ◽  
Xueshu Tao ◽  
Bohan Zhang ◽  
Cong Sun ◽  
...  

Reduction in Nrf2-mediated antioxidant response in the central nervous system plays an important role in the development and maintenance of neuropathic pain (NP). However, the mechanisms regulating Nrf2 activity in NP remain unclear. A recent in vitro study revealed that Sirt2, a member of the sirtuin family of proteins, affects antioxidant capacity by modulating Nrf2 activity. Here we examined whether central Sirt2 regulates NP through Nrf2-mediated oxidative stress pathway. In a rat model of spared nerve injury (SNI)-induced NP, mechanical allodynia and thermal hyperalgesia were observed on day 1 and up to day 14 post-SNI. The expression of Sirt2, Nrf2 and its target gene NQO1 in the spinal cord in SNI rats, compared with sham rats, was significantly decreased from day 7 and remained lower until the end of the experiment (day 14). The mechanical allodynia and thermal hyperalgesia in SNI rats were ameliorated by intrathecal injection of Nrf2 agonist tBHQ, which normalized expression of Nrf2 and NQO1 and reversed SNI-induced decrease in antioxidant enzyme superoxide dismutase (SOD) and increase in oxidative stress marker 8-hydroxy-2′-deoxyguanosine (8-OHdG) in the spinal cord. Moreover, intrathecal injection of a recombinant adenovirus expressing Sirt2 (Ad-Sirt2) that upregulated expression of Sirt2, restored expression of Nrf2 and NQO1 and attenuated oxidative stress in the spinal cord, leading to improvement of thermal hyperalgesia and mechanical allodynia in SNI rats. These findings suggest that peripheral nerve injury downregulates Sirt2 expression in the spinal cord, which inhibits Nrf2 activity, leading to increased oxidative stress and the development of chronic NP.


2018 ◽  
Vol 76 (11) ◽  
pp. 736-742 ◽  
Author(s):  
Mingxiao Zhang ◽  
Qinxue Dai ◽  
Dongdong Liang ◽  
Dan Li ◽  
Sijia Chen ◽  
...  

ABSTRACT Neuropathic pain is a chronic pain condition caused by damage or dysfunction of the central or peripheral nervous system. Electroacupuncture (EA) has an antinociceptive effect on neuropathic pain, which is partially due to inhibiting astrocyte activation in the spinal cord. We found that an intrathecal injection of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a selective adenosine A1 receptor antagonist, reversed the antinociceptive effects of EA in a chronic constriction injury-induced neuropathic pain model. The expression of GFAP in L4-L6 spinal cord was significantly upgraded, while DPCPX suppressed the effect of the EA-mediating inhibition of astrocyte activation, as well as wiping out the EA-induced suppression of cytokine content (TNF-α). These results indicated that the adenosine A1 receptor is involved in EA actions during neuropathic pain through suppressing astrocyte activation as well as TNF-α upregulation of EA, giving enlightenment to the mechanisms of acupuncture analgesia and development of therapeutic targets for neuropathic pain.


Author(s):  
Qianbo Chen ◽  
Ping Chen ◽  
Shuangqiong Zhou ◽  
Xiaodi Yan ◽  
John Zhang ◽  
...  

Background:Reactive oxygen species (ROS) are often associated with persistent pains such as neuropathic and inflammatory pain. Hydrogen gas can reduce ROS and alleviate cerebral, myocardial, and hepatic ischemia/reperfusion injuries. In the present study, we aim to investigate whether hydrogen-rich saline can reduce neuropathic pain in a rat model of chronic constriction injury (CCI).Methods:Thirty SD rats were randomly divided into three groups: sham group was administered sodium chloride by intrathecal injection (n=10); control groups underwent CCI surgery and were administered sodium chloride by intrathecal injection (n=10); vehicle group underwent CCI surgery and was administered hydrogen-rich saline by intrathecal injection (n=10). Drugs were administered in the dose of 100ul/kg once a day at 0.5 hours before and 1-7 day after CCI surgery. The mechanical thresholds were tested at one day before and 3-14 day after CCI surgery.Results:We found that hydrogen-rich saline significantly elevated the mechanical thresholds of neuropathic pain compared to vehicle (physiologic saline) control in CCI rats (p<0.05); it also decreased the levels of myeloperoxidase, maleic dialdehyde, and protein carbonyl in spinal cord by 7 days post-chronic constriction injury(p<0.05). In addition, hydrogen-rich saline also suppressed the expression of p38-mitogen-activated protein kinase (p38MAPK) and brain-derived neurotrophic factor (BDNF) in the spinal cord by 7 days post-chronic constriction injury (p<0.01, p<0.01, respectively), but had no effect on P2X4R (p>0.05), an ATP receptor.Conclusion:Intrathecal injection of hydrogen-rich saline can decrease oxidative stress and the expression of p38MAPK and BDNF that may contribute to the elevated threshold of neuropathic pain in rat CCI model.


2021 ◽  
Vol 17 ◽  
pp. 174480692199652
Author(s):  
Feng Zhou ◽  
Xian Wang ◽  
Baoyu Han ◽  
Xiaohui Tang ◽  
Ru Liu ◽  
...  

Microglia activation and subsequent pro-inflammatory responses play a key role in the development of neuropathic pain. The process of microglia polarization towards pro-inflammatory phenotype often occurs during neuroinflammation. Recent studies have demonstrated an active role for the gut microbiota in promoting microglial full maturation and inflammatory capabilities via the production of Short-Chain Fatty Acids (SCFAs). However, it remains unclear whether SCFAs is involved in pro-inflammatory/anti-inflammatory phenotypes microglia polarization in the neuropathic pain. In the present study, chronic constriction injury (CCI) was used to induce neuropathic pain in mice, the mechanical withdrawal threshold, thermal hyperalgesia were accomplished. The levels of microglia markers including ionized calcium-binding adaptor molecule 1 (Iba1), cluster of differentiation 11b (CD11b), pro-inflammatory phenotype markers including CD68, interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and anti-inflammatory phenotype markers including CD206, IL-4 in the hippocampus and spinal cord were determined on day 21 after CCI. The results showed that CCI produced mechanical allodynia and thermal hyperalgesia, and also increased the expressions of microglia markers (Iba1, CD11b) and pro-inflammatory phenotype markers (CD68, IL-1β, and TNF-α), but not anti-inflammatory phenotype marker (CD206, IL-4) in the hippocampus and spinal cord, accompanied by increased SCFAs in the gut. Notably, antibiotic administration reversed these abnormalities, and its effects was also bloked by SCFAs administration. In conclusion, data from our study suggest that CCI can lead to mechanical and thermal hyperalgesia, while SCFAs play a key role in the pathogenesis of neuropathic pain by regulating microglial activation and subsequent pro-inflammatory phenotype polarization. Antibiotic administration may be a new treatment for neuropathic pain by reducing the production of SCFAs and further inhibiting the process of microglia polarization.


2012 ◽  
Vol 3 (3) ◽  
pp. 183-184
Author(s):  
M. Richner ◽  
O.J. Bjerrum ◽  
Y. De Koninck ◽  
A. Nykjaer ◽  
C.B. Vaegter

AbstractBackground/aimsThe molecular mechanisms underlying neuropathic pain are incompletely understood, but recent data suggest that down-regulation of the chloride extruding co-transporter KCC2 in spinal cord sensory neurons is critical: Following peripheral nerve injury, activated microglia in the spinal cord release BDNF, which stimulates neuronal TrkB receptors and ultimately results in the reduction of KCC2 levels. Consequently, neuronal intracellular chloride ion concentration increases, impairing GABAA-receptor mediated inhibition. We have previously described how the receptor sortilin modulates neurotrophin signaling by facilitating anterograde transport of Trk receptors. Unpublished data further link SorCS2, another member of the Sortilins family of sorting receptors (sortilin, SorLA and SorCS1–3) to BDNF signaling by regulating presynaptic TrkB trafficking. The purpose of this study is to explore the involvement of Sortilins in neuropathic pain.MethodsWe subjected wild-type (wt), sortilin knockout (Sort1-/-) and SorCS2 knockout (SorCS2-/-) mice to the Spared Nerve Injury (SNI) model of peripheral nerve injury. Mechanical allodynia was measured by von Frey filaments using the up-down-up method and a 3-out-of-5 thresshold.ResultsAs previously described by several groups, wt mice developed significant mechanical allodynia following SNI. Interestingly however, mice lacking sortilin or SorCS2 were fully protected from development of allodynia and did not display KCC2 down-regulation following injury. In addition, a single intrathecal injection of antibodies against sortilin or SorCS2 could delay or rescue mechanical allodynia in wt SNI mice for 2-3 days. Finally, neither sortilin nor SorCS2 deficient mice responded to intrathecal injection of BDNF, in contrast to wt mice which developed transient mechanical allodynia.ConclusionWe hypothesize that sortilin and SorCS2 are involved in neuropathic pain development by regulating TrkB signaling. Alternatively, Sortilins may directly influence the regulation of KCC2 membrane levels following injury. Both hypotheses are currently being investigated by our group.


2020 ◽  
Author(s):  
Rui Xu ◽  
Fan Yang ◽  
Lijuan Li ◽  
Xiaohong Liu ◽  
Xiaolu Lei ◽  
...  

Abstract Background: The importance of P2X purinoceptors, CB2 receptor and microRNA-124(miR-124) in spinal cord microglia to the development of neuropathic pain was demonstrated in numerous previous studies. The upregulation of P2X4 and P2X7 receptors in spinal dorsal horn microglia is involved in the development of pain behavior caused by peripheral nerve injury. However, it is not clear whether the expression of P2X4 and P2X7 receptors at dorsal spinal cord will be influenced by CB2 receptor or miR-124 in rats after chronic sciatic nerve injury.Methods: Chronic constriction injury (CCI) of the sciatic nerve was performed in rats to induce neuropathic pain. Tests of the mechanical withdrawal threshold (MWT) were carried out to assess the response of the paw to mechanical stimulus. The expression of miR-124, P2X4, P2X7 and CB2 receptor were detected with RT-PCR. The protein expression of P2X4, P2X7 and CB2 receptor, RhoA, ROCK1, ROCK2, p-p38MAPK and p-NF-kappaBp65 was detected with Western blotting analysis. Results: Intrathecal administration of CB2 receptor agonist AM1241 significantly attenuated CCI-induced mechanical allodynia and significantly inhibited the increased expression of P2X4 and P2X7 receptors at the mRNA and protein levels, which imply that P2X4 and P2X7 receptors expression are down-regulated by AM1241 in CCI rats. Western blot analysis showed that AM1241 suppressed the elevated expression of RhoA, ROCK1, ROCK2, p-p38MAPK and NF-κBp65 in the dorsal spinal cord induced by CCI. After administration with Y-27632 (ROCK inhibitor), SB203580 (P38MAPK inhibitor) or PDTC (NF-κB inhibitor), the levels of P2X4 and P2X7 receptors expression in the dorsal spinal cord were lower than those in CCI rats, which imply that the ROCK/P38MAPK pathway and NF-κB activation may contribute to the increased expression of P2X4 and P2X7 receptor. On the other hand, in CCI rats, AM1241 treatment evoked the increased expression of CB2 receptor and miRNA-124, which can be inhibited by intrathecal injection of CB2 receptor antagonist AM630, which indicate that the increased expression of miRNA-124 may be medicated by CB2 receptor activation. In addition, the increased expression of P2X4 and P2X7 receptors in the dorsal spinal cord of CCI rats were inhibited by miRNA-124 agomir. Furthermore, intrathecal injection of miRNA-124 agomir could efficiently inhibit the ROCK/P38MAPK pathway and NF-κB activation in CCI rats. Moreover, AM1241 treatment significantly inhibited the expression of P2X4 and P2X7 receptors, and this suppression is enhanced by pretreatment with miRNA-124 agomir. On the contrast, the inhibitory effect of AM1241 on the expression of P2X4 and P2X7 receptor can be reversed by pretreatment with miRNA-124 antagomir.Conclusions: In CCI rats, intrathecal injection of AM1241 could efficiently induce the increased expression of miRNA-124, while inhibiting the ROCK/P38MAPK pathway and NF-κB activation in dorsal spinal cord. CB2 receptor/miRNA-124 signaling induced the decreased P2X4 and P2X7 receptors expression via inhibit the ROCK/P38MAPK pathway and NF-κB activation.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Syeda Fabeha Husain ◽  
Raymond W. M. Lam ◽  
Tao Hu ◽  
Michael W. F. Ng ◽  
Z. Q. G. Liau ◽  
...  

Neuropathic pain remains underrecognised and ineffectively treated in chronic pain sufferers. Consequently, their quality of life is considerably reduced, and substantial healthcare costs are incurred. The anatomical location of pain must be identified for definitive diagnosis, but current neuropsychological tools cannot do so. Matrix metalloproteinases (MMP) are thought to maintain peripheral neuroinflammation, and MMP-12 is elevated particularly in such pathological conditions. Magnetic resonance imaging (MRI) of the peripheral nervous system has made headway, owing to its high-contrast resolution and multiplanar features. We sought to improve MRI specificity of neural lesions, by constructing an MMP-12-targeted magnetic iron oxide nanoparticle (IONP). Its in vivo efficiency was evaluated in a rodent model of neuropathic pain, where the left lumbar 5 (L5) spinal nerve was tightly ligated. Spinal nerve ligation (SNL) successfully induced mechanical allodynia, and thermal hyperalgesia, in the left hind paw throughout the study duration. These neuropathy characteristics were absent in animals that underwent sham surgery. MMP-12 upregulation with concomitant macrophage infiltration, demyelination, and elastin fibre loss was observed at the site of ligation. This was not observed in spinal nerves contralateral and ipsilateral to the ligated spinal nerve or uninjured left L5 spinal nerves. The synthesised MMP-12-targeted magnetic IONP was stable and nontoxic in vitro. It was administered onto the left L5 spinal nerve by intrathecal injection, and decreased magnetic resonance (MR) signal was observed at the site of ligation. Histology analysis confirmed the presence of iron in ligated spinal nerves, whereas iron was not detected in uninjured left L5 spinal nerves. Therefore, MMP-12 is a potential biomarker of neuropathic pain. Its detection in vivo, using IONP-enhanced MRI, may be further developed as a tool for neuropathic pain diagnosis and management.


Sign in / Sign up

Export Citation Format

Share Document