scholarly journals EFFECT OF ETHEPHON CONCENTRATION AT DIFFERENT GROWTH STAGES ON YIELD AND ITS COMPONENTS OF WHEAT

2017 ◽  
Vol 48 (2) ◽  
Author(s):  
Al-Naqeeb & Hashim

An experiments were carried out at the field of Crops Dept., Coll. of Agric., Univ. of Baghdad, Abu Ghraib during 2010-2011 and 2011-2012 seasons to study effect of foliar stages and concentrations of ethephon on some growth traits and the yield of wheat (Triticumaestivum L.) Abu Ghraib-3 var. A split plot arrangement according to RCBD was used with four replications. The main plots were spray ethephon with four stages according to Zadok's scale which is: one leaf throught the sheath (ZGS10), three leaves unfolded stage (ZGS13), elongation stage (ZGS30) and flag leaf ligue visible (ZGS39), and the sub-plots was ethephon spray with three concentrations (0.400, 0.600 and 0.800) Kg.ha-1 in addition to control treatment. The results showed that ZGS13 gave lowest mean for height plant (90.47 and 92.80) cm, while ZGS30 was superior in number of tillers (493.61 and 535.35) tiller.m-2, percentage of tillers carried of spike (78.83 and 81.21, number of spikes (389.64 and 636.80) spike.m-2, grain yield (4.07 and 4.32) ton.ha-1, biological yield (11.29 and 11.59)ton.ha-1 and harvest index (36.03 and 37.26)% for both seasons, respectively. Also, the results showed that 0.800 Kg.ha-1 produced lowest means for height plant (77.91 and 86.25) cm and lodging index (3.65 and 2.75), and this treatment (0.800 mg.L-1) gave highest means for number of tillers (499.22 and 540.99) tiller.m-2, percentage of tillers carried of spike (78.88 and 78.15)%, number of spikes (393.84 and 423.91) spike.m-2, grain yield (4.14 and 4.12) ton.ha-1, biological yield (11.47 and 11.70)ton.ha-1 and harvest index (36.11 and 37.62)% for both seasons, respectively. The interaction between ZGS30 and 0.400 Kg.ha-1ethephon gave highest percentage of tillers carried of spike (80.96%) in the first season only.     

Author(s):  
Israa Rahi .S. Al Hamdaoui ◽  
Faisal M. M. Al-Tahir

Tow field experiments have been conducted, during winter season (2015 – 2016) at the agricultural experiments and researsh station (3 km sothern west Al-samawa) of the college of Agriculture – University of Al-Muthanna, Where it was ten inflorescences  conduct transaction in the expulsion of 50% for each expermental unit stag and when reach this stage of transactions conducted a comparsion and removing flag leaf awn and remove the lower leaves and shading of inflorescence,  to study the contribution of flag leaf, other leaves, parts of spike and tips in production of dry matter and composition of grain yield for wheat and oat crop. The experiment has been carried out by using the Split plot with R.C.B. desgin to three replications. Results show the control treatment gave high mean grain yield (5.402 g plant), biological yield (12.473 g plant) and harvest index (49.560 %). Removing of flag leaf, tip and other leaves treatments have led to lower of no. of grains per spike, weight of grain, grain yield, biological yield and percentage of protein. Shadowing of spike treatment has gaven decreasing in yield components and increasing to percentage of protein. Percentage of the contribution of flag leaf, other leaves, tips and spike (13.587 , 25.064 , 23.837 and 34.17) % respectively.


Author(s):  
Babburi Dinesh ◽  
Gaibriyal M. Lal ◽  
L. Bhanuprasad

A set of twenty four rice genotypes including one check variety were grown to estimate study genetic variability, heritability, genetic advance, correlation and path coefficient for 13 quantitative characters, observation recorded to study the genetic variability parameters, correlation coefficient and path coefficient for yield and its attributing traits. High to moderate estimates of GCV and PCV were recorded for test weight followed by spikelets per panicle, grain yield per plant, flag leaf width, flag leaf length, tillers per hill, biological yield and panicles per hill. Grain yield indicated significant positive correlation with plant height followed by tillers per hill, panicles per hill, biological yield and harvest index in terms of phenotypic correlation coefficient whereas in terms of genotypic coefficient it showed positive and significant correlation with plant height, tillers per hill, panicles per hill, biological yield and harvest index. Path coefficient analysis showed positive significant direct effects on grain yield per hill were exhibited by plant height, tillers per hill and harvest index at genotypic level whereas it showed positive and significant direct effect for tillers per hill, flag leaf width, biological yield and harvest index at phenotypic level. Thus, these traits are identified as the efficient and potential for indirect selection for the improvement of rice productivity in the present experimental materials.


Author(s):  
Ejaz Ahmad Khan ◽  
Iqtidar Hussain ◽  
Sheryar . ◽  
Hafiz Bashir Ahmad ◽  
Iqbal Hussain

Although,chickpea isnitrogen fixing crop but water scarcity under rain-fed condition reduces its nodulation process severely and nutrients use efficiency too. An experiment was carried out regarding the combined effect of nipping as well as foliar applied fertilizers on yield and yield components of chickpea under rain-fed conditions. Nipping and foliar application of nutrients significantly improved number of pods plant-1, biological yield (kg ha-1), harvest index (%) and final grain yield (kg ha-1). However, non-significant influence was seen in 1000-grain weight and number of grains pod-1. Foliar application of N PK (20:20:20) @2.5 kg ha-1 × nipping was found to be the best interaction among others which significantly increased number of branches plant-1 (11.30), number of pods plant-1(115.36), plant height(59.48cm) and grain yield(2338.9 kg ha-1) as compared to the control treatment. Nipping along with foliar application of NPKcan be practiced in chickpea for higher profitability.


2019 ◽  
Vol 4 (02) ◽  
pp. 135-139
Author(s):  
Ravi Kumar ◽  
Anant Kumar ◽  
Joginder Singh

Genetic variability, heritability, genetic advance and correlation coefficients were studied in 104 genotypes of wheat genotypes for yield and yield contributing traits. Both GCV and PCV were found to be moderate for flag leaf area, biological yield per plant, grain yield per plant and ash content. The days to ear emergence, days to maturity, plant height, harvest index and 1000-grain weight low GCV and PCV values were observed. Number of productive tillers per plant and spike length recorded moderate value of PCV and low value of GCV. High estimate of heritability in narrow sense was recorded for number of productive tillers per plant, biological yield per plant, harvest index and grain yield per plant, while it was moderate for days to ear emergence, days to maturity, plant height, flag leaf area, spike length, grains per spike and low heritability were recorded for 1000-grain weight. High heritability coupled with high genetic advance in per cent of mean was recorded for biological yield per plant and grain yield per plant. Grain yield per plant exhibited highly significant and positive association with 1000-grain weight, harvest index, biological yield per plant, grains per spike, number of productive tillers per plant and days to maturity.


2016 ◽  
Vol 8 (1) ◽  
pp. 350-357
Author(s):  
Pradeep Kumar ◽  
Gyanendra Singh ◽  
Sarvan Kumar ◽  
Anuj Kumar ◽  
Ashish Ojha

Genetic analysis was carried out in 55 genotypes (10 parents and 45 F1s) through diallel mating design excluding reciprocals in bread wheat. Analysis of variance showed appreciable variability among the breeding material for almost all the traits under study. The highest value of phenotypic coefficient of variation (PCV) and genotypic coefficient of variation (GCV) was found for flag leaf area (PCV=18.82, GCV=17.74), biological yield (PCV=12.98, GCV=11.70), grain yield (PCV=11.90, GCV=10.39) and harvest index (PCV=10.39, GCV=10.05). Highest heritability with highest genetic advance was estimated for flag leaf area (h2=52.24, GA=34.64), biological yield (h2=15.04, GA=21.71), harvest index (h2=18.19, GA=20.01), peduncle length (h2=31.72, GA=15.96) and spikelets per spike (h2=34.92, GA=12.96), therefore selection will be effective based on these traits. Grain yield was found significantly correlated (at <1% level of significance) with productive tillers (gr=0.3283**, pr=0.4347**), spike length (gr=0.1959**, pr=0.2203**), spikelets per spike (gr=0.4342**, pr=0.3813**), grains per spike (gr=0.7188**, pr=0.4918**), biological yield (gr=0.6101**, pr=0.6616**), harvest index (gr=0.3518**, pr=0.3227**) and thousand grain weight (gr=0.5232**, pr=0.3673**). Similarly path coefficient analysis estimates for biological yield (g=1.0524, p=1.0554), harvesting index (g=0.8862, p=0.8291), thousand grain weight (g=0.0588, p=0.0269), grains per spike (g=0.0496, p=0.0074), spike length (g=0.0209, p=0.0289), days to maturity (g=0.0142, p=0.0127), productive tillers (g=0.0186, p=0.0147), peduncle length (g=0.0123, p=0.0157), days to 50% flowering (g=0.0093, p=0.0072) and plant height (g=0.0042, p=0.0020) showed high positive direct effects on grain yield indicating that due importance should be given to these traits during selection for high yield.


2014 ◽  
Vol 11 (2) ◽  
pp. 17-32
Author(s):  
Sandeep Kumar Soni ◽  
VK Yadav ◽  
N Pratap ◽  
VP Bhadana ◽  
T Ram

Forty-five rice lines comprising of thirty derived hybrid lines obtained from ten tropical Japonica, three Indica and two national checks viz. Pusa Basmati 1121 and Sarjoo-52 were evaluated for selection parameters, yield contributing components and genetic divergence. Fifteen quantitative and three qualitative traits were studied from experimentation with randomized block design during Kharif 2011. The phenotypic coefficient of variability was higher than genotypic coefficient of variability for all of the traits. The highest estimates of broad sense heritability coupled with genetic advance in per cent of mean was recorded for spikelets per panicle, plant height followed by L:B ratio, spikelets per panicle, grains per panicle, biological yield per plant, flag leaf area, days to 50% flowering, plant height which might be due to the additive nature of gene action. Such results indicated that these traits will be reliable for the effective selection. Highly positive and significant correlation was observed at both phenotypic and genotypic level between grain yield per plant and biological yield per plant, followed by panicle bearing tillers per plant, spikelet fertility, panicle length, 1000- grain weight, grains per panicle, panicle weight, flag leaf length, spikelet per panicle, flag leaf area, kernel length, flag leaf width, days to 50% flowering, and harvest index. This relationship reflected that grain yield and aforesaid economic traits can be increased simultaneously in breeding programme to develop high yielding Indica as well as Tropical Japonica rice varieties. Whole genotypes grouped in 8 non-overlapping clusters exhibited maximum genetic diversity between clusters III i.e., TJ- 64897 × NDR-359, TJ-64897 × CSR36, TJ-64897 × PB-1 and VIII i.e., TJ-11010 × NDR359, TJ-11010 × PB-1, TJ-16081 × NDR-359, TJ-16081 × PB-1. These clusters also stand for early days to flowering, short slender, second highest harvest index and panicle bearing tillers per plant, spikelets per panicle, grains per panicle, spikelet fertility, 1000- grain weight, long bold slender, biological yield per plant, and grain yield per plant. These genotypes showing higher mean performance for aforesaid traits can be exploited for enhancing hybrid vigour of desired New Plant Type with higher number of panicle bearing tillers per plant, spikelet per panicle and grains per spike in Indica as well as Tropical Japonica rice varieties for achieving higher yield. DOI: http://dx.doi.org/10.3329/sja.v11i2.18399 SAARC J. Agri., 11(2): 17-32 (2013)


Author(s):  
Puneet Kumar ◽  
Y. P. S. Solanki ◽  
Vikram Singh ◽  
. Kiran

The experiment was conducted with 60 genotypes of bread wheat. These genotypes were grown in RBD using three replications during Rabi 2016-17 at Research Area of Wheat and Barley Section, Department of Genetics and Plant Breeding, CCS HAU, Hisar. To study the variability, correlation and path analysis, data were recorded for yield and its component traits i.e. days to 50% heading, days to anthesis, grain growth rate at 14, 21, 28 days (mg/g/day), plant height (cm), number of effective tillers/meter, flag leaf length (cm), flag leaf width (cm), flag leaf area (cm2), spike length (cm), number of spikelets per spike, number of grains per spike, 1000 grain weight (g), grain yield per plot (g), biological yield/plot (g) and harvest index (%). ANOVA showed highly significant differences among the genotypes for all the traits indicating adequacy of material and the traits studied for further assessment of genetic variability parameters. High value of GCV and PCV was recorded for grain yield per plot, followed by biological yield, indicating greater amount of variability among the genotypes. Highest heritability was recorded for days to 50% heading, followed by days to anthesis. Highly significant and positive association was perceived between grain yield and tillers per meter, plant height, number of grains per spike, number of spikelets per spike, flag leaf area, grain growth rate at 14, 21 and 28 days after anthesis, spike length, 1000 grain weight, biological yield and harvest index. The high direct effects were recorded for biological yield, harvest index, flag leaf breadth, number of effective tillers per meter and 1000 grain weight, in order.


2018 ◽  
Vol 10 (1) ◽  
pp. 6-11
Author(s):  
Sandeep Kumar ◽  
Pradeep Kumar ◽  
Vichitra Kumar Arya ◽  
Ravi Kumar ◽  
S. A. Kerkhi

The present study was conducted to estimate the gentic components and regression analysis for grain yield and various morphological traits in bread wheat involving 10 parents and their 45 F1s (half diallel) during 2012- 13 and 2013-14. Significant additive (D) and dominance (H1) variance for the traits indicated that expression of these traits is control by both additive and dominance gene action. Average degree of dominance (H1/D)1/2 were more than unity for the traits (peduncle length, flag leaf area, productive tillers, biological yield, grain yield, harvest index) indicating the preponderance of over dominance gene action. The estimates of h2 were positive and significant for days to ear emergence, peduncle length, productive tillers, biological yield and grain yield indicated dominance of genetic components in F1s. Positive and significant values of F were estimated for days to ear emergence, days to 50% flowering, spike length, flag leaf area and grain yield in F1s indicating the preponderance of dominance and positive genes in the parents involved. The theoretical value (0.25) of (H2/4H1) for all the traits indicated asymmetrical distribution of positive and negative genes. The proportion of dominant and recessive alleles indicated presence of dominant alleles in the parents. The traits showing more than 30% narrow sanse heritability could be rewarding for further improvement in grain yield in bread wheat. Regression analysis indicated that the traits (days to ear emergence, days to 50% flowering, peduncle length, flag leaf area, productive tillers, harvest index, biological yield and grain yield) control by over dominance type of gene action. The parent RAJ 4246 contained maximum dominant genes for days to ear emergence and days to 50% flowering; HD 2733 for spike length and flag leaf area and HD 2824 for productive tillers, biological yield and grain yield used as donors in multiple traits breeding programme to develop high yielding wheat genotypes.


2012 ◽  
Vol 4 (4) ◽  
pp. 110-114 ◽  
Author(s):  
Gulzar S. SANGHERA ◽  
Subhash C. KASHYAP

The F3 population of eighteen different cross combinations using five local and seven exotic genotypes was used to study the genetic parameters, heritability, correlation and path coefficients for fourteen quantitative characters under temperate conditions. The selected progenies showed highly significant difference for most of the agro-morphological characters. Comparatively high phenotypic coefficients of variation were observed for all the character than genotypic coefficient variation. High heritability (%) was recorded for days to 50% flowering (96%) followed by days to maturity (95%) and grain yield per plant (84%). High genetic advance were observed for grain yield (47%) followed by biological yield/plant (27%) and harvest index (25%). Days to 50% flowering was positively and significantly correlated with days to maturity, grain length with LB ratio flag leaf length with grain breadth and panicle length with grain breadth at genotypic level. Path coefficient analysis revealed that harvest index and biological yield has highest direct effect on yield followed by days to maturity and number of grain per panicle. Biological yield per plant has highest indirect effect on yield via days to flowering followed by grain weight via biological yield per plant, grain breadth via days to 50 % flowering and flag leaf length via biological yield per plant. Therefore, information on the genetic parameters such as coefficient of variation, heritability, genetic advance and the influence of environment on the expression of these characters will help the breeder to evolve suitable cultivars within a short time for hill ecologies.


Author(s):  
N. Nikitha Reddy ◽  
Gabrial M. Lal ◽  
B. Pragathi ◽  
P. Nikhil

The study was carried out to study the correlation and path coefficient analysis for grain yield characters in 36 rice genotypes including one check for 13 quantitative parameters. The experimental material was carried out during Kharif, 2020, in a randomized block design with three replications obtained from the Department of Genetics and Plant Breeding, SHUATS, Allahabad, U.P., India. Analysis of variance revealed that there is significant variability among the genotypes. Correlation coefficient analysis at genotype level and phenotypic level revealed that plant height, flag leaf length, flag leaf width, number of tillers per hill, number of panicles per hill, number of spikelets per panicle, biological yield, and harvest index, showed positive significant correlation with grain yield per plant. Path coefficient analysis at both genotypic and phenotypic levels revealed that flag leaf length, number of panicles per hill, days to maturity, biological yield, harvest index and test weight had positive direct effect on grain yield per hill. Biological yield per hill (0.8481) exerted high positive direct effect as well as high positive significant association (0.809**) with grain yield per hill thus this character resulted as most essential direct yield character.


Sign in / Sign up

Export Citation Format

Share Document