scholarly journals Regional Trends of Sea Level Rise along the Coast of Bangladesh

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Naila Matin ◽  
G. M. Jahid Hasan ◽  
Myisha Ahmad

Bangladesh is becoming increasingly vulnerable to the growing threat of climate change induced sea level rise. Considering the potential severe impacts that sea level rise will have on the coastal population and the country’s economy, it has become very important to know about the regional trends of changing sea levels along the coastlands of Bangladesh. The present study attempted to portray a representative scenario of sea level rise in the coastal regions of Bangladesh. Historic tide gauge records, ranging from 20 to 45 years, were used to determine reliable trends at multiple locations along the coast. Linear regression method was applied to derive the changing trend of annual high, mean and low tidal water levels. The location-specific trends of sea level rise determined in this study can be helpful to planners and policy makers to combat the emerging threat of SLR in a more efficient manner.

2020 ◽  
Author(s):  
Simon Treu ◽  
Matthias Mengel ◽  
Katja Frieler

<p>Sea level rise increases extreme water levels and thus the flood losses from storm surge events. While it is still difficult to estimate the influence of climate change on single storms, the influence of anthropogenic climate change on sea level rise is evident. We here aim to quantify the fraction of damages caused by sea level rise for a set of flood events of the last decade. Flood-extents and the spatial distribution of damages are reconstructed from openly available data-sources. We construct counterfactual flood extents for each event by a counterfactual sea level as it would have been in a world without climate change. As we are particularly interested in losses in poorer countries that often lack high resolution data such as LiDAR based elevation maps or tide-gauge records, our methodology is transferable between regions, building on global and open data. Depending on the study site, we detect a difference between observed and counterfactual damages though uncertainties remain high. Data availability and data detail remain a major restriction.</p>


2016 ◽  
Author(s):  
A. A. Kubryakov ◽  
S. V. Stanichny ◽  
D. L. Volkov

Abstract. Satellite altimetry measurements show that magnitude of the Black Sea level trends is spatially uneven. While the basin-averaged sea level was increasing at a rate of 3.15 mm/year from 1993 to 2014, the sea level rise varied from 0.15–2.5 mm/year in the central part to 3.5–3.8 mm/year in coastal areas and 5 mm/year in the southwestern part of the sea. These differences are caused by changes in the large- and mesoscale circulation of the Black Sea. A long-term increase of the cyclonic wind curl over the basin from 1979 to 2014 strengthened divergence in the center of the Black Sea that led to an increase of sea level near the coast and a decrease in the center of the basin. Changes in the distribution and intensity of mesoscale eddies caused the formation of the local extremes of sea level trend. The variability of the dynamic sea level (DSL) – the difference between the local and the basin-averaged sea levels – contributes significantly (up to ~ 50 % of the total variance) to the seasonal and interannual variability of sea level in the basin. The DSL variability in the Black Sea depends strongly on the basin-averaged wind curl and is well reconstructed using the ERA-Interim winds from 1979 to present, including the time when altimetry data was unavailable. The reconstruction can be used to correct historical tide gauges data for dynamic effects, which are usually neglected in the analysis of the Black Sea tide gauge records.


GeoHazards ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 80-100
Author(s):  
Phil J. Watson

The potential threats to the USA from current and projected sea level rise are significant, with profound environmental, social and economic consequences. This current study continues the refinement and improvement in analysis techniques for sea level research beyond the Fourth US National Climate Assessment (NCA4) report by incorporating further advancements in the time series analysis of long tide gauge records integrated with an improved vertical land motion (VLM) assessment. This analysis has also been synthesised with an updated regional assessment of satellite altimetry trends in the sea margins fringing the USA. Coastal margins more vulnerable to the threats posed by rising sea levels are those in which subsidence is prevalent, higher satellite altimetry trends are evident and higher ‘geocentric’ velocities in mean sea level are being observed. The evidence from this study highlights key spatial features emerging in 2020, which highlight the northern foreshore of the Gulf Coast and along the east coast of the USA south of the Chesapeake Bay region being more exposed to the range of factors exacerbating threats from sea level rise than other coastlines at present. The findings in this study complement and extend sea level research beyond NCA4 to 2020.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


2021 ◽  
Author(s):  
Mika Rantanen ◽  
Jani Särkkä ◽  
Jani Räihä ◽  
Matti Kämäräinen ◽  
Kirsti Jylhä

<p>Extremely high sea levels on the Finnish coast are typically caused by close passages of extratropical cyclones (ETCs), which raise the sea level with their associated extreme winds and lower air pressure. For coastal infrastructure, such as nuclear power plants, it is crucial to study physically possible sea level heights associated with ETCs. Such sea levels are not straightforward to determine from observational datasets only, because tide gauge records  cover about 100 years and do not necessarily capture the most extreme cases having return periods longer than 100 years.</p><p>In this study, a method for generating an ensemble of synthetic low-pressure systems is being developed to investigate the extreme sea level heights on the Finnish coast of Baltic sea. As input parameters for the method, the point of origin, velocity of the center of the cyclone and depth of the pressure anomaly need to be given. Based on the input parameters, the method forms an idealized low-pressure system using a two-dimensional Gaussian function. In order to find extreme, but still reasonable values for the input parameters, cyclone tracks from ERA5 reanalysis data will be analysed.</p><p>The ensemble of synthetic low pressure systems (i.e. the wind and pressure data) is used as an input to a numerical sea level model. As a result, we have an ensemble of simulated sea levels, from which we can determine the properties of the ETCs that induce the highest sea levels on a given location on the coast. The preliminary simulation results show that this method works well, forming a basis for studies on extreme sea levels. </p><p> </p>


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Phil J. Watson

This paper provides an Extreme Value Analysis (EVA) of the hourly water level record at Fort Denison dating back to 1915 to understand the statistical likelihood of the combination of high predicted tides and the more dynamic influences that can drive ocean water levels higher at the coast. The analysis is based on the Peaks-Over-Threshold (POT) method using a fitted Generalised Pareto Distribution (GPD) function to estimate extreme hourly heights above mean sea level. The analysis highlights the impact of the 1974 East Coast Low event and rarity of the associated measured water level above mean sea level at Sydney, with an estimated return period exceeding 1000 years. Extreme hourly predictions are integrated with future projections of sea level rise to provide estimates of relevant still water levels at 2050, 2070 and 2100 for a range of return periods (1 to 1000 years) for use in coastal zone management, design, and sea level rise adaptation planning along the NSW coastline. The analytical procedures described provide a step-by-step guide for practitioners on how to develop similar baseline information from any long tide gauge record and the associated limitations and key sensitivities that must be understood and appreciated in applying EVA.


2019 ◽  
Vol 11 (3) ◽  
pp. 277 ◽  
Author(s):  
Suresh Palanisamy Vadivel ◽  
Duk-jin Kim ◽  
Jungkyo Jung ◽  
Yang-Ki Cho ◽  
Ki-Jong Han ◽  
...  

Vertical land motion at tide gauges influences sea level rise acceleration; this must be addressed for interpreting reliable sea level projections. In recent years, tide gauge records for the Eastern coast of Korea have revealed rapid increases in sea level rise compared with the global mean. Pohang Tide Gauge Station has shown a +3.1 cm/year sea level rise since 2013. This study aims to estimate the vertical land motion that influences relative sea level rise observations at Pohang by applying a multi-track Persistent Scatter Interferometric Synthetic Aperture Radar (PS-InSAR) time-series analysis to Sentinel-1 SAR data acquired during 2015–2017. The results, which were obtained at a high spatial resolution (10 m), indicate vertical ground motion of −2.55 cm/year at the Pohang Tide Gauge Station; this was validated by data from a collocated global positioning system (GPS) station. The subtraction of InSAR-derived subsidence rates from sea level rise at the Pohang Tide Gauge Station is 6 mm/year; thus, vertical land motion significantly dominates the sea level acceleration. Natural hazards related to the sea level rise are primarily assessed by relative sea level changes obtained from tide gauges; therefore, tide gauge records should be reviewed for rapid vertical land motion along the vulnerable coastal areas.


Ocean Science ◽  
2015 ◽  
Vol 11 (4) ◽  
pp. 617-628 ◽  
Author(s):  
Q. H. Luu ◽  
P. Tkalich ◽  
T. W. Tay

Abstract. Sea level rise due to climate change is non-uniform globally, necessitating regional estimates. Peninsular Malaysia is located in the middle of Southeast Asia, bounded from the west by the Malacca Strait, from the east by the South China Sea (SCS), and from the south by the Singapore Strait. The sea level along the peninsula may be influenced by various regional phenomena native to the adjacent parts of the Indian and Pacific oceans. To examine the variability and trend of sea level around the peninsula, tide gauge records and satellite altimetry are analyzed taking into account vertical land movements (VLMs). At annual scale, sea level anomalies (SLAs) around Peninsular Malaysia on the order of 5–25 cm are mainly monsoon driven. Sea levels at eastern and western coasts respond differently to the Asian monsoon: two peaks per year in the Malacca Strait due to South Asian–Indian monsoon; an annual cycle in the remaining region mostly due to the East Asian–western Pacific monsoon. At interannual scale, regional sea level variability in the range of ±6 cm is correlated with El Niño–Southern Oscillation (ENSO). SLAs in the Malacca Strait side are further correlated with the Indian Ocean Dipole (IOD) in the range of ±5 cm. Interannual regional sea level falls are associated with El Niño events and positive phases of IOD, whilst rises are correlated with La Niña episodes and negative values of the IOD index. At seasonal to interannual scales, we observe the separation of the sea level patterns in the Singapore Strait, between the Raffles Lighthouse and Tanjong Pagar tide stations, likely caused by a dynamic constriction in the narrowest part. During the observation period 1986–2013, average relative rates of sea level rise derived from tide gauges in Malacca Strait and along the east coast of the peninsula are 3.6±1.6 and 3.7±1.1 mm yr−1, respectively. Correcting for respective VLMs (0.8±2.6 and 0.9±2.2 mm yr−1), their corresponding geocentric sea level rise rates are estimated at 4.4±3.1 and 4.6±2.5 mm yr−1. The geocentric rates are about 25 % faster than those measured at tide gauges around the peninsula; however, the level of uncertainty associated with VLM data is relatively high. For the common period between 1993 and 2009, geocentric sea level rise values along the Malaysian coast are similar from tide gauge records and satellite altimetry (3.1 and 2.7 mm yr−1, respectively), and arguably correspond to the global trend.


2021 ◽  
Vol 21 (2) ◽  
pp. 703-722
Author(s):  
Gonéri Le Cozannet ◽  
Déborah Idier ◽  
Marcello de Michele ◽  
Yoann Legendre ◽  
Manuel Moisan ◽  
...  

Abstract. Sea-level rise due to anthropogenic climate change is projected not only to exacerbate extreme events such as cyclones and storms but also to cause more frequent chronic flooding occurring at high tides under calm weather conditions. Chronic flooding occasionally takes place today in the low-lying areas of the Petit Cul-de-sac marin (Guadeloupe, West Indies, French Antilles). This area includes critical industrial and harbor and major economic infrastructures for the islands. As sea level rises, concerns are growing regarding the possibility of repeated chronic flooding events, which would alter the operations at these critical coastal infrastructures without appropriate adaptation. Here, we use information on past and future sea levels, vertical ground motion, and tides to assess times of emergence of chronic flooding in the Petit Cul-de-sac marin. For RCP8.5 (Representative Concentration Pathway 8.5; i.e., continued growth of greenhouse gas emissions), the number of flood days is projected to increase rapidly after the emergence of the process so that coastal sites will be flooded 180 d a year within 2 decades of the onset of chronic flooding. For coastal locations with the lowest altitude, we show that the reconstructed number of floods is consistent with observations known from a previous survey. Vertical ground motions are a key source of uncertainty in our projections. Yet, our satellite interferometric synthetic-aperture radar results show that the local variability in this subsidence is smaller than the uncertainties in the technique, which we estimate to be between 1 (standard deviation of measurements) and 5 mm/yr (upper theoretical bound). Despite these uncertainties, our results imply that adaptation pathways considering a rapid increase in recurrent chronic flooding are required for the critical port and industrial and commercial center of Guadeloupe. Similar processes are expected to take place in many low-elevation coastal zones worldwide, including on other tropical islands. The method used in this study can be applied to other locations, provided tide gauge records and local knowledge of vertical ground motions are available. We argue that identifying times of emergence of chronic flooding events is urgently needed in most low-lying coastal areas, because adaptation requires decades to be implemented, whereas chronic flooding hazards can worsen drastically within years of the first event being observed.


Sign in / Sign up

Export Citation Format

Share Document