scholarly journals Sum-Capacity of Massive MIMO Systems Using Vandermonde Matrices

Author(s):  
Claudio Ferreira Dias ◽  
Michelle S. P. Facina ◽  
Felipe Augusto Pereira de Figueiredo ◽  
Eduardo Rodrigues de Lima ◽  
Gustavo Fraidenraich

In this paper, we use a series expansion to calculate the sum-capacity of a massive Multiple-Input MultipleOutput (MIMO) system under propagation environment described by a dominant line-of-sight. The sum-capacity is written as Taylor’s series where each term is a function of the mean trace of k-th power of the channel matrix W. We analytically derive the mean trace of first, second, third, and fourth moments of W. Although the series is infinite, our numerical results show that only a few terms can tightly approximate the exact sum capacity. Numerical results corroborate our analytical expressions.

2020 ◽  
Author(s):  
Claudio Ferreira Dias ◽  
Michelle S. P. Facina ◽  
Felipe Augusto Pereira de Figueiredo ◽  
Eduardo Rodrigues de Lima ◽  
Gustavo Fraidenraich

In this paper, we use a series expansion to calculate the sum-capacity of a massive Multiple-Input MultipleOutput (MIMO) system under propagation environment described by a dominant line-of-sight. The sum-capacity is written as Taylor’s series where each term is a function of the mean trace of k-th power of the channel matrix W. We analytically derive the mean trace of first, second, third, and fourth moments of W. Although the series is infinite, our numerical results show that only a few terms can tightly approximate the exact sum capacity. Numerical results corroborate our analytical expressions.


Author(s):  
Elsadig Saeid ◽  
Varun Jeoti ◽  
Brahim Belhaouari Samir

Future Wireless Networks are expected to adopt multi-user multiple input multiple output (MU-MIMO) systems whose performance is maximized by making use of precoding at the transmitter. This chapter describes the recent advances in precoding design for MU-MIMO and introduces a new technique to improve the precoder performance. Without claiming to be comprehensive, the chapter gives deep introduction on basic MIMO techniques covering the basics of single user multiple input multiple output (SU-MIMO) links, its capacity, various transmission strategies, SU-MIMO link precoding, and MIMO receiver structures. After the introduction, MU-MIMO system model is defined and maximum achievable rate regions for both MU-MIMO broadcast and MU-MIMO multiple access channels are explained. It is followed by critical literature review on linear precoding design for MU-MIMO broadcast channel. This paves the way for introducing an improved technique of precoding design that is followed by its performance evaluation.


Author(s):  
Zhendong Zhou ◽  
Branka Vucetic

This chapter introduces the adaptive modulation and coding (AMC) as a practical means of approaching the high spectral efficiency theoretically promised by multiple-input multiple-output (MIMO) systems. It investigates the AMC MIMO systems in a generic framework and gives a quantitative analysis of the multiplexing gain of these systems. The effects of imperfect channel state information (CSI) on the AMC MIMO systems are pointed out. In the context of imperfect CSI, a design of robust near-capacity AMC MIMO system is proposed and its good performance is verified by simulation results. The proposed adaptive system is compared with the non-adaptive MIMO system, which shows the adaptive system approaches the channel capacity closer.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6213
Author(s):  
Muhammad Irshad Zahoor ◽  
Zheng Dou ◽  
Syed Bilal Hussain Shah ◽  
Imran Ullah Khan ◽  
Sikander Ayub ◽  
...  

Due to large spectral efficiency and low power consumption, the Massive Multiple-Input-Multiple-Output (MIMO) became a promising technology for the 5G system. However, pilot contamination (PC) limits the performance of massive MIMO systems. Therefore, two pilot scheduling schemes (i.e., Fractional Pilot Reuse (FPR) and asynchronous fractional pilot scheduling scheme (AFPS)) are proposed, which significantly mitigated the PC in the uplink time division duplex (TDD) massive MIMO system. In the FPR scheme, all the users are distributed into the central cell and edge cell users depending upon their signal to interference plus noise ratio (SINR). Further, the capacity of central and edge users is derived in terms of sum-rate, and the ideal number of the pilot is calculated which significantly maximized the sum rate. In the proposed AFPS scheme, the users are grouped into central users and edge users depending upon the interference they receive. The central users are assigned the same set of pilots because these users are less affected by interference, while the edge users are assigned the orthogonal pilots because these users are severely affected by interference. Consequently, the pilot overhead is reduced and inter-cell interference (ICI) is minimized. Further, results verify that the proposed schemes outperform the previous proposed traditional schemes, in terms of improved sum rates.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Chaowei Wang ◽  
Weidong Wang ◽  
Cheng Wang ◽  
Shuai Wang ◽  
Yang Yu

Antenna selection has been regarded as an effective method to acquire the diversity benefits of multiple antennas while potentially reduce hardware costs. This paper focuses on receive antenna selection. According to the proportion between the numbers of total receive antennas and selected antennas and the influence of each antenna on system capacity, we propose a fast adaptive antenna selection algorithm for wireless multiple-input multiple-output (MIMO) systems. Mathematical analysis and numerical results show that our algorithm significantly reduces the computational complexity and memory requirement and achieves considerable system capacity gain compared with the optimal selection technique in the same time.


2019 ◽  
Author(s):  
Felipe Augusto Pereira de Figueiredo ◽  
Claudio Ferreira Dias ◽  
Eduardo Rodrigues de Lima ◽  
Gustavo Fraidenraich

<div>The use of large-scale antenna arrays grants considerable benefits in energy and spectral efficiency to wireless systems due to spatial resolution and array gain techniques. By assuming a dominant line-of-sight environment in a massive MIMO scenario, we derive analytical expressions for the sum-capacity.</div><div>%</div><div>Then, we show that convenient simplifications on the sum-capacity expressions are possible when working at low and high SNR regimes.</div><div>%</div><div>Furthermore, in the case of a high SNR regime, it is demonstrated that the Gamma PDF can approximate the PDF of the instantaneous channel sum-capacity as the number of BS antennas grows. A second important demonstration presented in this work is that a Gamma PDF can also be used to approximate the PDF of the summation of the channel's singular values as the number of devices increases. Finally, it is important to highlight that the presented framework is useful for a massive number of Internet of Things devices as we show that the transmit power of each device can be made inversely proportional to the number of BS antennas.</div>


Author(s):  
Ashu Taneja ◽  
Nitin Saluja

Background: The paper considers the wireless system with large number of users (more than 50 users) and each user is assigned large number of antennas (around 200) at the Base Station (BS). Objective: The challenges associated with the defined system are increased power consumption and high complexity of associated circuitry. The antenna selection is introduced to combat these problems while the usage of linear precoding reduces computational complexity. The literature suggests number of antenna selection techniques based on statistical properties of signal. However, each antenna selection technique suits well to specific number of users. Methods: In this paper, the random antenna selection is compared with norm-based antenna selection. It is analysed that the random antenna selection leads to inefficient spectral efficiency if the number of users are more than 50 in Multi-User Multiple-Input Multiple Output (MU-MIMO) system. Results: The paper proposes the optimization of Energy-Efficiency (EE) with random transmit antenna selection for large number of users in MU-MIMO systems. Conclusion: Also the computation leads to optimization of number of transmit antennas at the BS for energy efficiency. The proposed algorithm results in improvement of the energy efficiency by 27% for more than 50 users.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Z. Y. Shao ◽  
S. W. Cheung ◽  
T. I. Yuk

Multiple-input multiple-output (MIMO) system is considered to be one of the key technologies of LTE since it achieves requirements of high throughput and spectral efficiency. The semidefinite relaxation (SDR) detection for MIMO systems is an attractive alternative to the optimum maximum likelihood (ML) decoding because it is very computationally efficient. We propose a new SDR detector for 256-QAM MIMO system and compare its performance with two other SDR detectors, namely, BC-SDR detector and VA-SDR detector. The tightness and complexity of these three SDR detectors are analyzed. Both theoretical analysis and simulation results demonstrate that the proposed SDR can provide the best BLER performance among the three detectors, while the BC-SDR detector and the VA-SDR detector provide identical BLER performance. Moreover, the BC-SDR has the lowest computational complexity and the VA-SDR has the highest computational complexity, while the proposed SDR is in between.


2017 ◽  
Vol 7 (1.1) ◽  
pp. 638
Author(s):  
Ashish Kumar Sarangi ◽  
Amrit Mukherjee ◽  
Amlan Datta

To achieve high capacity and high data rates is the main requirement for today’s generation. This paper studies about the performance and capacity comparison of MIMO and cooperative MIMO systems. The comparison of capacity between multiple- input- multiple- output (MIMO) and cooperative MIMO systems helps us to know that which system have better performance and better capacity. The simulation results shows that among SISO, SIMO, MISO and MIMO  system the capacity of MIMO will be better but in between MIMO and cooperative MIMO, Cooperative MIMO system have high capacity than MIMO systems.  


2018 ◽  
Vol 8 (4) ◽  
pp. 3249-3254 ◽  
Author(s):  
A. Elsanousi ◽  
S. Oztürk

Fourth-generation (4G) wireless communication system is mainly based on MIMO (multiple input and multiple output) and OFDM (orthogonal frequency division multiplexing). The combination of these two techniques leads to a better system, known as OFDM-MIMO system, providing higher capacity and data rate. This paper demonstrates the BER (bit error rate) performance of OFDM and OFDM-MIMO system using convolution code to encrypt the data stream that can be sent over communication channels. Simulation is made on Matlab using three different channels (AWGN, Rician and Rayleigh). The simulation results show that the combined system has better performance compared to OFDM system. The practical part of this study was conducted by using two USRPs B210 (universal software radio peripheral) for transmitting and receiving, two antennas were used during transmission for both sides. The transmitted signal is successfully recovered.


Sign in / Sign up

Export Citation Format

Share Document