scholarly journals Deep Learning Based Hybrid Models for Prediction of COVID-19 using Chest X-Ray

Author(s):  
Shree Charran R ◽  
Rahul Kumar Dubey

COVID-19 has ended up being the greatest pandemic to come to pass for on humanity in the last century. It has influenced all parts of present day life. The best way to confine its spread is the early and exact finding of infected patients. Clinical imaging strategies like Chest X-ray imaging helps specialists to assess the degree of spread of infection. In any case, the way that COVID-19 side effects imitate those of conventional Pneumonia brings few issues utilizing of Chest Xrays for its prediction accurately. In this investigation, we attempt to assemble 4 ways to deal with characterize between COVID-19 Pneumonia, NON-COVID-19 Pneumonia, and an Healthy- Normal Chest X-Ray images. Considering the low accessibility of genuine named Chest X-Ray images, we incorporated combinations of pre-trained models and data augmentation methods to improve the quality of predictions. Our best model has achieved an accuracy of 99.5216%. More importantly, the hybrid did not predict a False Negative Normal (i.e. infected case predicted as normal) making it the most attractive feature of the study.

2020 ◽  
Author(s):  
Shree Charran R ◽  
Rahul Kumar Dubey

COVID-19 has ended up being the greatest pandemic to come to pass for on humanity in the last century. It has influenced all parts of present day life. The best way to confine its spread is the early and exact finding of infected patients. Clinical imaging strategies like Chest X-ray imaging helps specialists to assess the degree of spread of infection. In any case, the way that COVID-19 side effects imitate those of conventional Pneumonia brings few issues utilizing of Chest Xrays for its prediction accurately. In this investigation, we attempt to assemble 4 ways to deal with characterize between COVID-19 Pneumonia, NON-COVID-19 Pneumonia, and an Healthy- Normal Chest X-Ray images. Considering the low accessibility of genuine named Chest X-Ray images, we incorporated combinations of pre-trained models and data augmentation methods to improve the quality of predictions. Our best model has achieved an accuracy of 99.5216%. More importantly, the hybrid did not predict a False Negative Normal (i.e. infected case predicted as normal) making it the most attractive feature of the study.


Author(s):  
Lakshmisetty Ruthvik Raj ◽  
◽  
Bitra Harsha Vardhan ◽  
Mullapudi Raghu Vamsi ◽  
Keerthikeshwar Reddy Mamilla ◽  
...  

COVID-19 is a severe and potentially fatal respiratory infection called coronavirus 2 disease (SARS-Co-2). COVID-19 is easily detectable on an abnormal chest x-ray. Numerous extensive studies have been conducted due to the findings, demonstrating how precise the detection of coronas using X-rays within the chest is. To train a deep learning network, such as a convolutional neural network, a large amount of data is required. Due to the recent end of the pandemic, it is difficult to collect many Covid x-ray images in a short period. The purpose of this study is to demonstrate how X-ray imaging (CXR) is created using the Covid CNN model-based convolutional network. Additionally, we demonstrate that the performance of CNNs and various COVID-19 acquisition algorithms can be used to generate synthetic images from data extensions. Alone, with CNN distribution, an accuracy of 85 percent was achieved. The accuracy has been increased to 95% by adding artificial images generated from data. We anticipate that this approach will expedite the discovery of COVID-19 and result in radiological solid programs. We leverage transfer learning in this paper to reduce time complexity and achieve the highest accuracy.


Author(s):  
Saleh Albahli ◽  
Waleed Albattah

Objective: Automatic prediction of COVID-19 using deep convolution neural networks based pre-trained transfer models and Chest X-ray images. Method: This research employs the advantages of computer vision and medical image analysis to develop an automated model that has the clinical potential for early detection of the disease. Using Deep Learning models, the research aims at evaluating the effectiveness and accuracy of different convolutional neural networks models in the automatic diagnosis of COVID-19 from X-ray images as compared to diagnosis performed by experts in the medical community. Result: Due to the fact that the dataset available for COVID-19 is still limited, the best model to use is the InceptionNetV3. Performance results show that the InceptionNetV3 model yielded the highest accuracy of 98.63% (with data augmentation) and 98.90% (without data augmentation) among the three models designed. However, as the dataset gets bigger, the Inception ResNetV2 and NASNetlarge will do a better job of classification. All the performed networks tend to over-fit when data augmentation is not used, this is due to the small amount of data used for training and validation. Conclusion: A deep transfer learning is proposed to detecting the COVID-19 automatically from chest X-ray by training it with X-ray images gotten from both COVID-19 patients and people with normal chest Xrays. The study is aimed at helping doctors in making decisions in their clinical practice due its high performance and effectiveness, the study also gives an insight to how transfer learning was used to automatically detect the COVID-19.


2020 ◽  
Author(s):  
Hao Quan ◽  
Xiaosong Xu ◽  
Tingting Zheng ◽  
Zhi Li ◽  
Mingfang Zhao ◽  
...  

Abstract Objective: A deep learning framework for detecting COVID-19 is developed, and a small amount of chest X-ray data is used to accurately screen COVID-19.Methods: In this paper, we propose a deep learning framework that integrates convolution neural network and capsule network. DenseNet and CapsNet fusion are used to give full play to their respective advantages, reduce the dependence of convolution neural network on a large amount of data, and can quickly and accurately distinguish COVID-19 from Non-COVID-19 through chest X-ray imaging.Results: A total of 1472 chest X-ray COVID-19 and non-COVID-19 images are used, this method can achieve an accuracy of 99.32% and a precision of 100%, with 98.55% sensitivity and 100% specificity.Conclusion: These results show that the deep fusion neural network DenseCapsNet has good performance in novel coronavirus pneumonia X-ray detection. We also prove through experiments that the detection performance of DenseCapsNet is not affected fundamentally by a lack of data augmentation and pre-training.


2021 ◽  
Vol 29 (1) ◽  
pp. 19-36
Author(s):  
Çağín Polat ◽  
Onur Karaman ◽  
Ceren Karaman ◽  
Güney Korkmaz ◽  
Mehmet Can Balcı ◽  
...  

BACKGROUND: Chest X-ray imaging has been proved as a powerful diagnostic method to detect and diagnose COVID-19 cases due to its easy accessibility, lower cost and rapid imaging time. OBJECTIVE: This study aims to improve efficacy of screening COVID-19 infected patients using chest X-ray images with the help of a developed deep convolutional neural network model (CNN) entitled nCoV-NET. METHODS: To train and to evaluate the performance of the developed model, three datasets were collected from resources of “ChestX-ray14”, “COVID-19 image data collection”, and “Chest X-ray collection from Indiana University,” respectively. Overall, 299 COVID-19 pneumonia cases and 1,522 non-COVID 19 cases are involved in this study. To overcome the probable bias due to the unbalanced cases in two classes of the datasets, ResNet, DenseNet, and VGG architectures were re-trained in the fine-tuning stage of the process to distinguish COVID-19 classes using a transfer learning method. Lastly, the optimized final nCoV-NET model was applied to the testing dataset to verify the performance of the proposed model. RESULTS: Although the performance parameters of all re-trained architectures were determined close to each other, the final nCOV-NET model optimized by using DenseNet-161 architecture in the transfer learning stage exhibits the highest performance for classification of COVID-19 cases with the accuracy of 97.1 %. The Activation Mapping method was used to create activation maps that highlights the crucial areas of the radiograph to improve causality and intelligibility. CONCLUSION: This study demonstrated that the proposed CNN model called nCoV-NET can be utilized for reliably detecting COVID-19 cases using chest X-ray images to accelerate the triaging and save critical time for disease control as well as assisting the radiologist to validate their initial diagnosis.


Author(s):  
Elena Forcén ◽  
María José Bernabé ◽  
Roberto Larrosa-Barrero
Keyword(s):  
X Ray ◽  

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 434
Author(s):  
Anca Nicoleta Marginean ◽  
Delia Doris Muntean ◽  
George Adrian Muntean ◽  
Adelina Priscu ◽  
Adrian Groza ◽  
...  

It has recently been shown that the interpretation by partial differential equations (PDEs) of a class of convolutional neural networks (CNNs) supports definition of architectures such as parabolic and hyperbolic networks. These networks have provable properties regarding the stability against the perturbations of the input features. Aiming for robustness, we tackle the problem of detecting changes in chest X-ray images that may be suggestive of COVID-19 with parabolic and hyperbolic CNNs and with domain-specific transfer learning. To this end, we compile public data on patients diagnosed with COVID-19, pneumonia, and tuberculosis, along with normal chest X-ray images. The negative impact of the small number of COVID-19 images is reduced by applying transfer learning in several ways. For the parabolic and hyperbolic networks, we pretrain the networks on normal and pneumonia images and further use the obtained weights as the initializers for the networks to discriminate between COVID-19, pneumonia, tuberculosis, and normal aspects. For DenseNets, we apply transfer learning twice. First, the ImageNet pretrained weights are used to train on the CheXpert dataset, which includes 14 common radiological observations (e.g., lung opacity, cardiomegaly, fracture, support devices). Then, the weights are used to initialize the network which detects COVID-19 and the three other classes. The resulting networks are compared in terms of how well they adapt to the small number of COVID-19 images. According to our quantitative and qualitative analysis, the resulting networks are more reliable compared to those obtained by direct training on the targeted dataset.


2021 ◽  
Vol 11 (2) ◽  
pp. 411-424 ◽  
Author(s):  
José Daniel López-Cabrera ◽  
Rubén Orozco-Morales ◽  
Jorge Armando Portal-Diaz ◽  
Orlando Lovelle-Enríquez ◽  
Marlén Pérez-Díaz

Sign in / Sign up

Export Citation Format

Share Document