scholarly journals Mutual Aid Among Sensors: An Emergency Function for Sensor Networks

Author(s):  
Costas Michaelides ◽  
Foteini-Niovi Pavlidou

A large number of wireless sensor nodes in a certain area results in high contention. Inevitably, the transmissions of any possible critical data packets may fail due to collisions. In this article, we introduce an aspect of human intelligence in wireless sensor networks, influenced by cooperative networking, which enhances the timely delivery of critical data. Mutual aid among sensors (MAAS), is an emergency out-of-the-box medium access control (MAC) function for IEEE 802.15.4-2020. Specifically, the network coordinator detects critical data packets and sets an emergency flag to its next beacon, to inform the nodes that they may overhear data packets. When a node overhears a critical data packet from a neighboring node it switches to sleep mode and stays idle until the end of the superframe. Thus, interference is mitigated locally and temporarily. Simulation results, using the CC2650 radio parameters in OMNeT++, show that interference is reduced significantly, in favor of the timely delivery of critical data packets.

2020 ◽  
Author(s):  
Costas Michaelides ◽  
Foteini-Niovi Pavlidou

A large number of wireless sensor nodes in a certain area results in high contention. Inevitably, the transmissions of any possible critical data packets may fail due to collisions. In this article, we introduce an aspect of human intelligence in wireless sensor networks, influenced by cooperative networking, which enhances the timely delivery of critical data. Mutual aid among sensors (MAAS), is an emergency out-of-the-box medium access control (MAC) function for IEEE 802.15.4-2020. Specifically, the network coordinator detects critical data packets and sets an emergency flag to its next beacon, to inform the nodes that they may overhear data packets. When a node overhears a critical data packet from a neighboring node it switches to sleep mode and stays idle until the end of the superframe. Thus, interference is mitigated locally and temporarily. Simulation results, using the CC2650 radio parameters in OMNeT++, show that interference is reduced significantly, in favor of the timely delivery of critical data packets.


Author(s):  
Shweta K. Kanhere ◽  
Mahesh Goudar ◽  
Vijay M. Wadhai

In this paper, we are interested in optimizing the delay of event-driven wireless sensor networks, for which events does not occur frequently. In such systems, most of the energy is consumed when the radios are on, waiting for an arrival to occur. Sleep-wake scheduling is an effective mechanism to prolong the lifetime of this energy constrained wireless sensor networks by optimization of the delay in the network but this scheme could result in substantial delays because a transmitting node needs to wait for its next-hop relay node to wake up. An attempt has been made to reduce these delays by developing new method of packet forwarding schemes, where each nod opportunistically forwards a packet to the its neighboring node that wakes up among multiple candidate nodes. In this paper, the focus is to study how to optimize the packet forwarding schemes by optimization of the expected packet-delivery delays from the sensor nodes to the sink. Based on optimized delay scheme result, we then provide a solution to the central system about how to optimally control the system parameters of the sleep-wake scheduling protocol and the packet forwarding protocol to maximize the network lifetime, subject to a constraint on the expected end-to-end packet delivery delay. Our numerical results indicate that the proposed solution can outperform prior heuristic solutions in the literature, especially under the practical scenarios where there are obstructions, e.g., a lake or a mountain, in the area of wireless sensor networks.


2014 ◽  
Vol 13 (9) ◽  
pp. 4868-4880
Author(s):  
Sukhvinder Singh Bamber

This paper investigates the radio receiver Bit Error Rate (BER) at different types of devices in IEEE 802.15.4 Wireless Sensor Networks (WSNs) for the different current draw parameters: transmit mode, receive mode, sleep mode and idle mode keeping other parameters like: initial energy and power supply same for all motes; Clearly proving that if BER is to be taken into consideration for the performance enhancement then Z1 mote should be implemented in IEEE 802.15.4 WSNs as they produce minimal BER. 


Author(s):  
José A. Afonso ◽  
Pedro Macedo ◽  
Luis A. Rocha ◽  
José H. Correia

Conventional wired body sensor networks have been used in hospitals over the last decade; however, the tethered operation restricts the mobility of the patients. In the scenario considered in this chapter, the signals collected from the patients’ bodies are wirelessly transmitted to a base station, and then delivered to a remote diagnosis centre through a communication infrastructure, enabling full mobility of the patient in the coverage area of the wireless network. Healthcare applications require the network to satisfy demanding requirements in terms of quality of service (QoS) and, at the same time, minimize the energy consumption of the sensor nodes. The traffic generated by data-intensive healthcare applications may lead to frequent collisions between sensor nodes and the consequent loss of data, if conventional MAC protocols for wireless sensor networks are used. Therefore, this chapter presents LPRT and CCMAC, two MAC protocols that intend to satisfy the QoS requirements of these applications, but differ in the wireless topology used. Experimental results for an implementation of the LPRT using an IEEE 802.15.4 compliant wireless sensor platform are presented, as well as simulation results comparing the performance of direct communication (between wireless body sensor nodes and the base station) with two other approaches relying on a cluster-based topology (similar to the one proposed by the authors of LEACH), which demonstrate the benefits of using a cluster-based topology on wireless healthcare applications.


The network delay and power consumptions are the two main factors governing the efficiency of wireless sensor networks. In this paper, our goal is to minimize the delay and maximize the lifespan of event-based wireless sensor networks in which activities occur infrequently.In such architectures, most of the power is fed on when the radios are on, ready for a packet to arrive.Sleep–wake scheduling is a highly efficient mechanism to prolong the lifetime of these power-constrained wireless sensor networks. However, sleep–wake scheduling could provide result with considerable delays. This research attempts to limit these delays by developing “anycast” based packet forwarding schemes that places each node opportunistically forwards a packet to the first neighboring node which wakes up amongst more than one candidate nodes.In this paper, we propose to optimize the anycast forwarding schemes by minimizing the anticipated packetdelivery delays from the sensor nodes to the sink node. Based on this analysis, we then provide a solution to the joint control problem of how to optimally manage the architecture parameters of the sleep–wake scheduling protocol and the any-cast packetforwarding protocol to maximize the network lifetime, with reference to a constraint on the expected end-to-end packetarriving delay.


2014 ◽  
Vol 11 (3) ◽  
pp. 1017-1035 ◽  
Author(s):  
Young-Long Chen ◽  
Mu-Yen Chen ◽  
Fu-Kai Cheung ◽  
Yung-Chi Chang

Energy is limited in wireless sensor networks (WSNs) so that energy consumption is very important. In this paper, we propose a hybrid architecture based on power-efficient gathering in sensor information system (PEGASIS) and low-energy adaptive clustering hierarchy (LEACH). This architecture can achieve an average distribution of energy loads, and reduced energy consumption in transmission. To further extend the system lifetime, we combine the intersection-based coverage algorithm (IBCA) with LEACH architecture and the hybrid architecture to prolong the system lifetime that introducing sensor nodes to enter sleep mode when inactive. This step can save more energy consumption. Simulation results show that the performance of our proposed LEACH architecture with IBCA and the hybrid architecture with IBCA perform better than LEACH architecture with PBCA in terms of energy efficiency, surviving nodes and sensing areas.


Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 135 ◽  
Author(s):  
Vicente Casares-Giner ◽  
Tatiana Inés Navas ◽  
Dolly Smith Flórez ◽  
Tito R. Vargas H.

In this work it is considered a circular Wireless Sensor Networks (WSN) in a planar structure with uniform distribution of the sensors and with a two-level hierarchical topology. At the lower level, a cluster configuration is adopted in which the sensed information is transferred from sensor nodes to a cluster head (CH) using a random access protocol (RAP). At CH level, CHs transfer information, hop-by-hop, ring-by-ring, towards to the sink located at the center of the sensed area using TDMA as MAC protocol. A Markovian model to evaluate the end-to-end (E2E) transfer delay is formulated. In addition to other results such as the well know energy hole problem, the model reveals that for a given radial distance between the CH and the sink, the transfer delay depends on the angular orientation between them. For instance, when two rings of CHs are deployed in the WSN area, the E2E delay of data packets generated at ring 2 and at the “west” side of the sink, is 20% higher than the corresponding E2E delay of data packets generated at ring 2 and at the “east” side of the sink. This asymmetry can be alleviated by rotating from time to time the allocation of temporary slots to CHs in the TDMA communication. Also, the energy consumption is evaluated and the numerical results show that for a WSN with a small coverage area, say a radio of 100 m, the energy saving is more significant when a small number of rings are deployed, perhaps none (a single cluster in which the sink acts as a CH). Conversely, topologies with a large number of rings, say 4 or 5, offer a better energy performance when the service WSN covers a large area, say radial distances greater than 400 m.


2019 ◽  
Vol 15 (6) ◽  
pp. 155014771985424 ◽  
Author(s):  
Munsif Ali ◽  
Anwar Khan ◽  
Hasan Mahmood ◽  
Naeeem Bhatti

In underwater wireless sensor networks, stability and reliability of the network are of paramount importance. Stability of the network ensures persistent operation of the network that, in consequence, avoids data loss when nodes consume all the battery power and subject to death. Particularly, nodes bearing a low pressure of water die early in the usual routing approach due to being preferred choices for data routing. Reliability ensures minimization of the adverse channel effects on data packets so that the desired information is easily extracted from these packets. This article proposes two routing protocols for underwater wireless sensor networks: reliable and stability-aware routing and cooperative reliable and stability-aware routing. In reliable and stability-aware routing, energy assignment to a node is made on the basis of its depth. Sensor nodes having the lowest depth are assigned the highest amount of energy. This energy assignment is called the energy grade of a node and five energy grades are formed in the proposed network from top to bottom. The energy grade along with energy residing in a node battery and its depth decide its selection as a forwarder node. The reliable and stability-aware routing uses only a single link to forward packets. Such a link may not be reliable always. To overcome this issue, the cooperative reliable and stability-aware routing is proposed which introduces cooperative routing to reliable and stability-aware routing. Cooperative routing involves the reception of multiple copies of data symbols by destination. This minimizes the adverse channel effects on data packets and makes the information extraction convenient and less cumbersome at the final destination. Unlike the conventional approach, the proposed schemes do not take into account the coordinates of nodes for defining the routing trajectories, which is challenging in underwater medium. Simulation results reveal a better behavior of the proposed protocols than some competitive schemes in terms of providing stability to the network, packet transfer to the ultimate destination, and latency.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 23 ◽  
Author(s):  
Hao Fu ◽  
Yinghong Liu ◽  
Zhe Dong ◽  
Yuanming Wu

In cluster-based wireless sensor networks, cluster heads (CHs) gather and fuse data packets from sensor nodes; then, they forward fused packets to the sink node (SN). This helps wireless sensor networks balance energy effectively and efficiently to prolong their lifetime. However, cluster-based WSNs are vulnerable to selective forwarding attacks. Compromised CHs would become malicious and launch selective forwarding attacks in which they drop part of or all the packets from other nodes. In this paper, a data clustering algorithm (DCA) for detecting a selective forwarding attack (DCA-SF) is proposed. It can capture and isolate malicious CHs that have launched selective forwarding attacks by clustering their cumulative forwarding rates (CFRs). The DCA-SF algorithm has been strengthened by changing the DCA parameters (Eps, Minpts) adaptively. The simulation results show that the DCA-SF has a low missed detection rate of 1.04% and a false detection rate of 0.42% respectively with low energy consumption.


2020 ◽  
Vol 13 (3) ◽  
pp. 353-361
Author(s):  
Veervrat Singh Chandrawanshi ◽  
Rajiv Kumar Tripathi ◽  
Rahul Pachauri ◽  
Nafis Uddin Khan

Background:Wireless Sensor Networks (WSNs) refer to a group of sensors used for sensing and monitoring the physical data of the environment and organizing the collected data at a central location. These networks enjoy several benefits because of their lower cost, smaller size and smarter sensors. However, a limited source of energy and lifetime of the sensors have emerged as the major setbacks for these networks.Methods:In this work, an energy-aware algorithm has been proposed for the transmission of variable data packets from sensor nodes to the base station according to the balanced energy consumption by all the nodes of a WSN.Results:Obtained simulation results verify that the lifetime of the sensor network is significantly enhanced in comparison to other existing clustering based routing algorithm.Conclusion:The proposed algorithm is comparatively easy to implement and achieves a higher gain in the lifetime of a WSN while keeping the throughput nearly same as LEACH protocol.


Sign in / Sign up

Export Citation Format

Share Document