scholarly journals Spectral Differential Privacy: Application to Smart Meter Data

Author(s):  
Kendall Parker ◽  
Prabir Barooah ◽  
Matthew Hale

<div>We present Spectral Differential Privacy (SpDP), a novel form of differential privacy designed to protect the frequency content of time series data that come from wide sense stationary stochastic processes. This notion is motivated by privacy needs in applications with time series data over unbounded time, such as smart meters. First, a notion of differential privacy on the space of (discretized) spectral densities is introduced. A Gaussian-like mechanism for SpDP is then presented that provides differential privacy to the spectral density. Next, a novel streaming implementation is developed to enable real-time use of the proposed mechanism. The privacy guarantee provided by SpDP is independent of the time duration over which data is collected or shared. In contrast, time-domain trajectory-level differential privacy (TrDP) will require noise with large variance to provide privacy over an extended time duration. The technique is numerically evaluated using smart meter data from a single home to compare the utility of SpDP to that of time-domain trajectory-level differential privacy. The noise added by SpDP is substantially smaller than that added by time-domain TrDP, particularly when privacy over long time horizons is sought by TrDP.</div>

2021 ◽  
Author(s):  
Kendall Parker ◽  
Prabir Barooah ◽  
Matthew Hale

<div>We present Spectral Differential Privacy (SpDP), a novel form of differential privacy designed to protect the frequency content of time series data that come from wide sense stationary stochastic processes. This notion is motivated by privacy needs in applications with time series data over unbounded time, such as smart meters. First, a notion of differential privacy on the space of (discretized) spectral densities is introduced. A Gaussian-like mechanism for SpDP is then presented that provides differential privacy to the spectral density. Next, a novel streaming implementation is developed to enable real-time use of the proposed mechanism. The privacy guarantee provided by SpDP is independent of the time duration over which data is collected or shared. In contrast, time-domain trajectory-level differential privacy (TrDP) will require noise with large variance to provide privacy over an extended time duration. The technique is numerically evaluated using smart meter data from a single home to compare the utility of SpDP to that of time-domain trajectory-level differential privacy. The noise added by SpDP is substantially smaller than that added by time-domain TrDP, particularly when privacy over long time horizons is sought by TrDP.</div>


2007 ◽  
pp. 88
Author(s):  
Wataru Suzuki ◽  
Yanfei Zhou

This article represents the first step in filling a large gap in knowledge concerning why Public Assistance (PA) use recently rose so fast in Japan. Specifically, we try to address this problem not only by performing a Blanchard and Quah decomposition on long-term monthly time series data (1960:04-2006:10), but also by estimating prefecturelevel longitudinal data. Two interesting findings emerge from the time series analysis. The first is that permanent shock imposes a continuously positive impact on the PA rate and is the main driving factor behind the recent increase in welfare use. The second finding is that the impact of temporary shock will last for a long time. The rate of the use of welfare is quite rigid because even if the PA rate rises due to temporary shocks, it takes about 8 or 9 years for it to regain its normal level. On the other hand, estimations of prefecture-level longitudinal data indicate that the Financial Capability Index (FCI) of the local government2 and minimum wage both impose negative effects on the PA rate. We also find that the rapid aging of Japan's population presents a permanent shock in practice, which makes it the most prominent contribution to surging welfare use.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jing Zhao ◽  
Shubo Liu ◽  
Xingxing Xiong ◽  
Zhaohui Cai

Privacy protection is one of the major obstacles for data sharing. Time-series data have the characteristics of autocorrelation, continuity, and large scale. Current research on time-series data publication mainly ignores the correlation of time-series data and the lack of privacy protection. In this paper, we study the problem of correlated time-series data publication and propose a sliding window-based autocorrelation time-series data publication algorithm, called SW-ATS. Instead of using global sensitivity in the traditional differential privacy mechanisms, we proposed periodic sensitivity to provide a stronger degree of privacy guarantee. SW-ATS introduces a sliding window mechanism, with the correlation between the noise-adding sequence and the original time-series data guaranteed by sequence indistinguishability, to protect the privacy of the latest data. We prove that SW-ATS satisfies ε-differential privacy. Compared with the state-of-the-art algorithm, SW-ATS is superior in reducing the error rate of MAE which is about 25%, improving the utility of data, and providing stronger privacy protection.


Author(s):  
Kyungwon Kim ◽  
Kyoungro Yoon

The existing industry evaluation method utilizes the method of collecting the structured information such as the financial information of the companies included in the relevant industry and deriving the industrial evaluation index through the statistical analysis model. This method takes a long time to calculate the structured data and cause the time delay problem. In this paper, to solve this time delay problem, we derive monthly industry-specific interest and likability as a time series data type, which is a new industry evaluation indicator based on unstructured data. In addition, we propose a method to predict the industrial risk index, which is used as an important factor in industrial evaluation, based on derived industry-specific interest and likability time series data.


2007 ◽  
Vol 9 (1) ◽  
pp. 30-41 ◽  
Author(s):  
Nikhil S. Padhye ◽  
Sandra K. Hanneman

The application of cosinor models to long time series requires special attention. With increasing length of the time series, the presence of noise and drifts in rhythm parameters from cycle to cycle lead to rapid deterioration of cosinor models. The sensitivity of amplitude and model-fit to the data length is demonstrated for body temperature data from ambulatory menstrual cycling and menopausal women and from ambulatory male swine. It follows that amplitude comparisons between studies cannot be made independent of consideration of the data length. Cosinor analysis may be carried out on serial-sections of the series for improved model-fit and for tracking changes in rhythm parameters. Noise and drift reduction can also be achieved by folding the series onto a single cycle, which leads to substantial gains in the model-fit but lowers the amplitude. Central values of model parameters are negligibly changed by consideration of the autoregressive nature of residuals.


2020 ◽  
Vol 245 ◽  
pp. 07001
Author(s):  
Laura Sargsyan ◽  
Filipe Martins

Large experiments in high energy physics require efficient and scalable monitoring solutions to digest data of the detector control system. Plotting multiple graphs in the slow control system and extracting historical data for long time periods are resource intensive tasks. The proposed solution leverages the new virtualization, data analytics and visualization technologies such as InfluxDB time-series database for faster access large scale data, Grafana to visualize time-series data and an OpenShift container platform to automate build, deployment, and management of application. The monitoring service runs separately from the control system thus reduces a workload on the control system computing resources. As an example, a test version of the new monitoring was applied to the ATLAS Tile Calorimeter using the CERN Cloud Process as a Service platform. Many dashboards in Grafana have been created to monitor and analyse behaviour of the High Voltage distribution system. They visualize not only values measured by the control system, but also run information and analytics data (difference, deviation, etc.). The new monitoring with a feature-rich visualization, filtering possibilities and analytics tools allows to extend detector control and monitoring capabilities and can help experts working on large scale experiments.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4466
Author(s):  
Li Guo ◽  
Runze Li ◽  
Bin Jiang

The monitoring of electrical equipment and power grid systems is very essential and important for power transmission and distribution. It has great significances for predicting faults based on monitoring a long sequence in advance, so as to ensure the safe operation of the power system. Many studies such as recurrent neural network (RNN) and long short-term memory (LSTM) network have shown an outstanding ability in increasing the prediction accuracy. However, there still exist some limitations preventing those methods from predicting long time-series sequences in real-world applications. To address these issues, a data-driven method using an improved stacked-Informer network is proposed, and it is used for electrical line trip faults sequence prediction in this paper. This method constructs a stacked-Informer network to extract underlying features of long sequence time-series data well, and combines the gradient centralized (GC) technology with the optimizer to replace the previously used Adam optimizer in the original Informer network. It has a superior generalization ability and faster training efficiency. Data sequences used for the experimental validation are collected from the wind and solar hybrid substation located in Zhangjiakou city, China. The experimental results and concrete analysis prove that the presented method can improve fault sequence prediction accuracy and achieve fast training in real scenarios.


Eos ◽  
2017 ◽  
Vol 98 ◽  
Author(s):  
Toste Tanhua

How measurements from a glider deployed off the coast of Peru are contributing to a much-needed long time-series data set.


Sign in / Sign up

Export Citation Format

Share Document