scholarly journals Better Prediction of Mutation Score

Author(s):  
Yossi Gil ◽  
Dor Ma’ayan

<div><div><div><p>Mutation score is widely accepted to be a reliable measurement for the effectiveness of software tests. Recent studies, however, show that mutation analysis is extremely costly and hard to use in practice. We present a novel direct prediction model of mutation score using neural networks. Relying solely on static code features that do not require generation of mutants or execution of the tests, we predict mutation score with an accuracy better than a quintile. When we include statement coverage as a feature, our accuracy rises to about a decile. Using a similar approach, we also improve the state-of-the-art results for binary test effectiveness prediction and introduce an intuitive, easy-to-calculate set of features superior to previously studied sets. We also publish the largest dataset of test-class level mutation score and static code features data to date, for future research. Finally, we discuss how our approach could be integrated into real-world systems, IDEs, CI tools, and testing frameworks.</p></div></div></div>

2021 ◽  
Author(s):  
Yossi Gil ◽  
Dor Ma’ayan

<div><div><div><p>Mutation score is widely accepted to be a reliable measurement for the effectiveness of software tests. Recent studies, however, show that mutation analysis is extremely costly and hard to use in practice. We present a novel direct prediction model of mutation score using neural networks. Relying solely on static code features that do not require generation of mutants or execution of the tests, we predict mutation score with an accuracy better than a quintile. When we include statement coverage as a feature, our accuracy rises to about a decile. Using a similar approach, we also improve the state-of-the-art results for binary test effectiveness prediction and introduce an intuitive, easy-to-calculate set of features superior to previously studied sets. We also publish the largest dataset of test-class level mutation score and static code features data to date, for future research. Finally, we discuss how our approach could be integrated into real-world systems, IDEs, CI tools, and testing frameworks.</p></div></div></div>


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Hylke E. Beck ◽  
Seth Westra ◽  
Jackson Tan ◽  
Florian Pappenberger ◽  
George J. Huffman ◽  
...  

Abstract We introduce the Precipitation Probability DISTribution (PPDIST) dataset, a collection of global high-resolution (0.1°) observation-based climatologies (1979–2018) of the occurrence and peak intensity of precipitation (P) at daily and 3-hourly time-scales. The climatologies were produced using neural networks trained with daily P observations from 93,138 gauges and hourly P observations (resampled to 3-hourly) from 11,881 gauges worldwide. Mean validation coefficient of determination (R2) values ranged from 0.76 to 0.80 for the daily P occurrence indices, and from 0.44 to 0.84 for the daily peak P intensity indices. The neural networks performed significantly better than current state-of-the-art reanalysis (ERA5) and satellite (IMERG) products for all P indices. Using a 0.1 mm 3 h−1 threshold, P was estimated to occur 12.2%, 7.4%, and 14.3% of the time, on average, over the global, land, and ocean domains, respectively. The highest P intensities were found over parts of Central America, India, and Southeast Asia, along the western equatorial coast of Africa, and in the intertropical convergence zone. The PPDIST dataset is available via www.gloh2o.org/ppdist.


2000 ◽  
Vol 40 (1) ◽  
pp. 341 ◽  
Author(s):  
A.G. Bruce ◽  
P.M. Wong ◽  
Y. Zhang ◽  
H.A. Salisch ◽  
C.C. Fung ◽  
...  

This paper reviews the state-of-the-art of neural networks for permeability prediction from well logs. Good prediction of permeability is necessary for reservoir characterisation and is important for improving the reliability of the asset value of oil and gas companies. Two particular models, known as backpropagation and radial basis function networks, have been applied. From previous work, six innovative aspects are identified:choice of inputs;outlier detection and removal;data splitting;scaling;multiple networks; andprediction confidence.We have also provided a list of future research directions in the area, reflecting the current deficiencies of the use of neural networks. The topics are:the quality and quantity of core data;the maximum use of the logs;the compatibility of scales;the use of soft computing; andthe management of prediction confidence.The current applications are certainly the beginning of a new era. It is important for petrophysicists to take advantage of the advanced technologies.


2019 ◽  
Vol 9 (11) ◽  
pp. 2347 ◽  
Author(s):  
Hannah Kim ◽  
Young-Seob Jeong

As the number of textual data is exponentially increasing, it becomes more important to develop models to analyze the text data automatically. The texts may contain various labels such as gender, age, country, sentiment, and so forth. Using such labels may bring benefits to some industrial fields, so many studies of text classification have appeared. Recently, the Convolutional Neural Network (CNN) has been adopted for the task of text classification and has shown quite successful results. In this paper, we propose convolutional neural networks for the task of sentiment classification. Through experiments with three well-known datasets, we show that employing consecutive convolutional layers is effective for relatively longer texts, and our networks are better than other state-of-the-art deep learning models.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 81 ◽  
Author(s):  
Madeleine E. Bartlett ◽  
Cristina Costescu ◽  
Paul Baxter ◽  
Serge Thill

The last few decades have seen widespread advances in technological means to characterise observable aspects of human behaviour such as gaze or posture. Among others, these developments have also led to significant advances in social robotics. At the same time, however, social robots are still largely evaluated in idealised or laboratory conditions, and it remains unclear whether the technological progress is sufficient to let such robots move “into the wild”. In this paper, we characterise the problems that a social robot in the real world may face, and review the technological state of the art in terms of addressing these. We do this by considering what it would entail to automate the diagnosis of Autism Spectrum Disorder (ASD). Just as for social robotics, ASD diagnosis fundamentally requires the ability to characterise human behaviour from observable aspects. However, therapists provide clear criteria regarding what to look for. As such, ASD diagnosis is a situation that is both relevant to real-world social robotics and comes with clear metrics. Overall, we demonstrate that even with relatively clear therapist-provided criteria and current technological progress, the need to interpret covert behaviour cannot yet be fully addressed. Our discussions have clear implications for ASD diagnosis, but also for social robotics more generally. For ASD diagnosis, we provide a classification of criteria based on whether or not they depend on covert information and highlight present-day possibilities for supporting therapists in diagnosis through technological means. For social robotics, we highlight the fundamental role of covert behaviour, show that the current state-of-the-art is unable to characterise this, and emphasise that future research should tackle this explicitly in realistic settings.


2019 ◽  
Vol 2019 (4) ◽  
pp. 54-71
Author(s):  
Asad Mahmood ◽  
Faizan Ahmad ◽  
Zubair Shafiq ◽  
Padmini Srinivasan ◽  
Fareed Zaffar

Abstract Stylometric authorship attribution aims to identify an anonymous or disputed document’s author by examining its writing style. The development of powerful machine learning based stylometric authorship attribution methods presents a serious privacy threat for individuals such as journalists and activists who wish to publish anonymously. Researchers have proposed several authorship obfuscation approaches that try to make appropriate changes (e.g. word/phrase replacements) to evade attribution while preserving semantics. Unfortunately, existing authorship obfuscation approaches are lacking because they either require some manual effort, require significant training data, or do not work for long documents. To address these limitations, we propose a genetic algorithm based random search framework called Mutant-X which can automatically obfuscate text to successfully evade attribution while keeping the semantics of the obfuscated text similar to the original text. Specifically, Mutant-X sequentially makes changes in the text using mutation and crossover techniques while being guided by a fitness function that takes into account both attribution probability and semantic relevance. While Mutant-X requires black-box knowledge of the adversary’s classifier, it does not require any additional training data and also works on documents of any length. We evaluate Mutant-X against a variety of authorship attribution methods on two different text corpora. Our results show that Mutant-X can decrease the accuracy of state-of-the-art authorship attribution methods by as much as 64% while preserving the semantics much better than existing automated authorship obfuscation approaches. While Mutant-X advances the state-of-the-art in automated authorship obfuscation, we find that it does not generalize to a stronger threat model where the adversary uses a different attribution classifier than what Mutant-X assumes. Our findings warrant the need for future research to improve the generalizability (or transferability) of automated authorship obfuscation approaches.


2009 ◽  
Vol 15 (sup1) ◽  
pp. 52-74 ◽  
Author(s):  
Ashu Jain ◽  
Holger R. Maier ◽  
Graeme C. Dandy ◽  
K. P. Sudheer

2022 ◽  
Vol 13 (1) ◽  
pp. 1-54
Author(s):  
Yu Zhou ◽  
Haixia Zheng ◽  
Xin Huang ◽  
Shufeng Hao ◽  
Dengao Li ◽  
...  

Graph neural networks provide a powerful toolkit for embedding real-world graphs into low-dimensional spaces according to specific tasks. Up to now, there have been several surveys on this topic. However, they usually lay emphasis on different angles so that the readers cannot see a panorama of the graph neural networks. This survey aims to overcome this limitation and provide a systematic and comprehensive review on the graph neural networks. First of all, we provide a novel taxonomy for the graph neural networks, and then refer to up to 327 relevant literatures to show the panorama of the graph neural networks. All of them are classified into the corresponding categories. In order to drive the graph neural networks into a new stage, we summarize four future research directions so as to overcome the challenges faced. It is expected that more and more scholars can understand and exploit the graph neural networks and use them in their research community.


2020 ◽  
Vol 34 (07) ◽  
pp. 12329-12337
Author(s):  
Yi Wei ◽  
Wenbo Li ◽  
Yanbo Fan ◽  
Linghan Xu ◽  
Ming-Ching Chang ◽  
...  

We aim to detect real-world concurrent activities performed by a single person from a streaming 3D skeleton sequence. Different from most existing works that deal with concurrent activities performed by multiple persons that are seldom correlated, we focus on concurrent activities that are spatio-temporally or causally correlated and performed by a single person. For the sake of generalization, we propose an approach based on a decompositional design to learn a dedicated feature representation for each activity class. To address the scalability issue, we further extend the class-level decompositional design to the postural-primitive level, such that each class-wise representation does not need to be extracted by independent backbones, but through a dedicated weighted aggregation of a shared pool of postural primitives. There are multiple interdependent instances deriving from each decomposition. Thus, we propose Stacked Relation Networks (SRN), with a specialized relation network for each decomposition, so as to enhance the expressiveness of instance-wise representations via the inter-instance relationship modeling. SRN achieves state-of-the-art performance on a public dataset and a newly collected dataset. The relation weights within SRN are interpretable among the activity contexts. The new dataset and code are available at https://github.com/weiyi1991/UA_Concurrent/


Sign in / Sign up

Export Citation Format

Share Document