scholarly journals 3D Single-Person Concurrent Activity Detection Using Stacked Relation Network

2020 ◽  
Vol 34 (07) ◽  
pp. 12329-12337
Author(s):  
Yi Wei ◽  
Wenbo Li ◽  
Yanbo Fan ◽  
Linghan Xu ◽  
Ming-Ching Chang ◽  
...  

We aim to detect real-world concurrent activities performed by a single person from a streaming 3D skeleton sequence. Different from most existing works that deal with concurrent activities performed by multiple persons that are seldom correlated, we focus on concurrent activities that are spatio-temporally or causally correlated and performed by a single person. For the sake of generalization, we propose an approach based on a decompositional design to learn a dedicated feature representation for each activity class. To address the scalability issue, we further extend the class-level decompositional design to the postural-primitive level, such that each class-wise representation does not need to be extracted by independent backbones, but through a dedicated weighted aggregation of a shared pool of postural primitives. There are multiple interdependent instances deriving from each decomposition. Thus, we propose Stacked Relation Networks (SRN), with a specialized relation network for each decomposition, so as to enhance the expressiveness of instance-wise representations via the inter-instance relationship modeling. SRN achieves state-of-the-art performance on a public dataset and a newly collected dataset. The relation weights within SRN are interpretable among the activity contexts. The new dataset and code are available at https://github.com/weiyi1991/UA_Concurrent/

Author(s):  
Yan Bai ◽  
Yihang Lou ◽  
Yongxing Dai ◽  
Jun Liu ◽  
Ziqian Chen ◽  
...  

Vehicle Re-Identification (ReID) has attracted lots of research efforts due to its great significance to the public security. In vehicle ReID, we aim to learn features that are powerful in discriminating subtle differences between vehicles which are visually similar, and also robust against different orientations of the same vehicle. However, these two characteristics are hard to be encapsulated into a single feature representation simultaneously with unified supervision. Here we propose a Disentangled Feature Learning Network (DFLNet) to learn orientation specific and common features concurrently, which are discriminative at details and invariant to orientations, respectively. Moreover, to effectively use these two types of features for ReID, we further design a feature metric alignment scheme to ensure the consistency of the metric scales. The experiments show the effectiveness of our method that achieves state-of-the-art performance on three challenging datasets.


2021 ◽  
Author(s):  
Yossi Gil ◽  
Dor Ma’ayan

<div><div><div><p>Mutation score is widely accepted to be a reliable measurement for the effectiveness of software tests. Recent studies, however, show that mutation analysis is extremely costly and hard to use in practice. We present a novel direct prediction model of mutation score using neural networks. Relying solely on static code features that do not require generation of mutants or execution of the tests, we predict mutation score with an accuracy better than a quintile. When we include statement coverage as a feature, our accuracy rises to about a decile. Using a similar approach, we also improve the state-of-the-art results for binary test effectiveness prediction and introduce an intuitive, easy-to-calculate set of features superior to previously studied sets. We also publish the largest dataset of test-class level mutation score and static code features data to date, for future research. Finally, we discuss how our approach could be integrated into real-world systems, IDEs, CI tools, and testing frameworks.</p></div></div></div>


Author(s):  
Hao Nie ◽  
Xianpei Han ◽  
Le Sun ◽  
Chi Man Wong ◽  
Qiang Chen ◽  
...  

Entity alignment (EA) aims to identify entities located in different knowledge graphs (KGs) that refer to the same real-world object. To learn the entity representations, most EA approaches rely on either translation-based methods which capture the local relation semantics of entities or graph convolutional networks (GCNs), which exploit the global KG structure. Afterward, the aligned entities are identified based on their distances. In this paper, we propose to jointly leverage the global KG structure and entity-specific relational triples for better entity alignment. Specifically, a global structure and local semantics preserving network is proposed to learn entity representations in a coarse-to-fine manner. Experiments on several real-world datasets show that our method significantly outperforms other entity alignment approaches and achieves the new state-of-the-art performance.


2021 ◽  
Author(s):  
Yossi Gil ◽  
Dor Ma’ayan

<div><div><div><p>Mutation score is widely accepted to be a reliable measurement for the effectiveness of software tests. Recent studies, however, show that mutation analysis is extremely costly and hard to use in practice. We present a novel direct prediction model of mutation score using neural networks. Relying solely on static code features that do not require generation of mutants or execution of the tests, we predict mutation score with an accuracy better than a quintile. When we include statement coverage as a feature, our accuracy rises to about a decile. Using a similar approach, we also improve the state-of-the-art results for binary test effectiveness prediction and introduce an intuitive, easy-to-calculate set of features superior to previously studied sets. We also publish the largest dataset of test-class level mutation score and static code features data to date, for future research. Finally, we discuss how our approach could be integrated into real-world systems, IDEs, CI tools, and testing frameworks.</p></div></div></div>


2020 ◽  
Vol 34 (07) ◽  
pp. 11077-11084
Author(s):  
Yung-Han Huang ◽  
Kuang-Jui Hsu ◽  
Shyh-Kang Jeng ◽  
Yen-Yu Lin

Video re-localization aims to localize a sub-sequence, called target segment, in an untrimmed reference video that is similar to a given query video. In this work, we propose an attention-based model to accomplish this task in a weakly supervised setting. Namely, we derive our CNN-based model without using the annotated locations of the target segments in reference videos. Our model contains three modules. First, it employs a pre-trained C3D network for feature extraction. Second, we design an attention mechanism to extract multiscale temporal features, which are then used to estimate the similarity between the query video and a reference video. Third, a localization layer detects where the target segment is in the reference video by determining whether each frame in the reference video is consistent with the query video. The resultant CNN model is derived based on the proposed co-attention loss which discriminatively separates the target segment from the reference video. This loss maximizes the similarity between the query video and the target segment while minimizing the similarity between the target segment and the rest of the reference video. Our model can be modified to fully supervised re-localization. Our method is evaluated on a public dataset and achieves the state-of-the-art performance under both weakly supervised and fully supervised settings.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Changyong Li ◽  
Yongxian Fan ◽  
Xiaodong Cai

Abstract Background With the development of deep learning (DL), more and more methods based on deep learning are proposed and achieve state-of-the-art performance in biomedical image segmentation. However, these methods are usually complex and require the support of powerful computing resources. According to the actual situation, it is impractical that we use huge computing resources in clinical situations. Thus, it is significant to develop accurate DL based biomedical image segmentation methods which depend on resources-constraint computing. Results A lightweight and multiscale network called PyConvU-Net is proposed to potentially work with low-resources computing. Through strictly controlled experiments, PyConvU-Net predictions have a good performance on three biomedical image segmentation tasks with the fewest parameters. Conclusions Our experimental results preliminarily demonstrate the potential of proposed PyConvU-Net in biomedical image segmentation with resources-constraint computing.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1091
Author(s):  
Izaak Van Crombrugge ◽  
Rudi Penne ◽  
Steve Vanlanduit

Knowledge of precise camera poses is vital for multi-camera setups. Camera intrinsics can be obtained for each camera separately in lab conditions. For fixed multi-camera setups, the extrinsic calibration can only be done in situ. Usually, some markers are used, like checkerboards, requiring some level of overlap between cameras. In this work, we propose a method for cases with little or no overlap. Laser lines are projected on a plane (e.g., floor or wall) using a laser line projector. The pose of the plane and cameras is then optimized using bundle adjustment to match the lines seen by the cameras. To find the extrinsic calibration, only a partial overlap between the laser lines and the field of view of the cameras is needed. Real-world experiments were conducted both with and without overlapping fields of view, resulting in rotation errors below 0.5°. We show that the accuracy is comparable to other state-of-the-art methods while offering a more practical procedure. The method can also be used in large-scale applications and can be fully automated.


2021 ◽  
Vol 54 (6) ◽  
pp. 1-35
Author(s):  
Ninareh Mehrabi ◽  
Fred Morstatter ◽  
Nripsuta Saxena ◽  
Kristina Lerman ◽  
Aram Galstyan

With the widespread use of artificial intelligence (AI) systems and applications in our everyday lives, accounting for fairness has gained significant importance in designing and engineering of such systems. AI systems can be used in many sensitive environments to make important and life-changing decisions; thus, it is crucial to ensure that these decisions do not reflect discriminatory behavior toward certain groups or populations. More recently some work has been developed in traditional machine learning and deep learning that address such challenges in different subdomains. With the commercialization of these systems, researchers are becoming more aware of the biases that these applications can contain and are attempting to address them. In this survey, we investigated different real-world applications that have shown biases in various ways, and we listed different sources of biases that can affect AI applications. We then created a taxonomy for fairness definitions that machine learning researchers have defined to avoid the existing bias in AI systems. In addition to that, we examined different domains and subdomains in AI showing what researchers have observed with regard to unfair outcomes in the state-of-the-art methods and ways they have tried to address them. There are still many future directions and solutions that can be taken to mitigate the problem of bias in AI systems. We are hoping that this survey will motivate researchers to tackle these issues in the near future by observing existing work in their respective fields.


2019 ◽  
Vol 9 (13) ◽  
pp. 2684 ◽  
Author(s):  
Hongyang Li ◽  
Lizhuang Liu ◽  
Zhenqi Han ◽  
Dan Zhao

Peeling fibre is an indispensable process in the production of preserved Szechuan pickle, the accuracy of which can significantly influence the quality of the products, and thus the contour method of fibre detection, as a core algorithm of the automatic peeling device, is studied. The fibre contour is a kind of non-salient contour, characterized by big intra-class differences and small inter-class differences, meaning that the feature of the contour is not discriminative. The method called dilated-holistically-nested edge detection (Dilated-HED) is proposed to detect the fibre contour, which is built based on the HED network and dilated convolution. The experimental results for our dataset show that the Pixel Accuracy (PA) is 99.52% and the Mean Intersection over Union (MIoU) is 49.99%, achieving state-of-the-art performance.


2017 ◽  
Vol 70 (6) ◽  
pp. 1276-1292
Author(s):  
Chong Yu ◽  
Jiyuan Cai ◽  
Qingyu Chen

To achieve more accurate navigation performance in the landing process, a multi-resolution visual positioning technique is proposed for landing assistance of an Unmanned Aerial System (UAS). This technique uses a captured image of an artificial landmark (e.g. barcode) to provide relative positioning information in the X, Y and Z axes, and yaw, roll and pitch orientations. A multi-resolution coding algorithm is designed to ensure the UAS will not lose the detection of the landing target due to limited visual angles or camera resolution. Simulation and real world experiments prove the performance of the proposed technique in positioning accuracy, detection accuracy, and navigation effect. Two types of UAS are used to verify the generalisation of the proposed technique. Comparison experiments to state-of-the-art techniques are also included with the results analysis.


Sign in / Sign up

Export Citation Format

Share Document