scholarly journals Real-Time Anticipation and Prevention of Hot Spots by Monitoring the Dynamic Conductance of Photovoltaic Panels

Author(s):  
William Lamb ◽  
Dallon Asnes ◽  
Jonathan Kupfer ◽  
Emma Lickey ◽  
Jeremy Bakken ◽  
...  

<div>Hot spotting in photovoltaic (PV) panels causes physical damage, power loss, reduced lifetime reliability, and increased manufacturing costs. The problem arises routinely in defect-free standard panels; any string of cells that receives uneven illumination can develop hot spots, and the temperature rise often exceeds 100°C in conventional silicon panels despite on-panel bypass diodes, the standard mitigation technique. Bypass diodes limit the power dissipated in a cell subjected to reverse bias, but they do not prevent hot spots from forming. An alternative control method has been suggested by Kernahan [1] that senses in real time the dynamic conductance |dI/dV| of a string of cells and adjusts its operating current so that a partially shaded cell is never forced into reverse bias. We start by exploring the behavior of individual illuminated PV cells when externally forced into reverse bias. We observe that cells can suffer significant heating and structural damage, with desoldering of cell-tabbing and discolorations on the front cell surface. Then we test PV panels and confirm Kernahan’s proposed panel-level solution that anticipates and prevents hot spots in real time. Simulations of cells and panels confirm our experimental observations and provide insights into both the operation of Kernahan’s method and panel performance.</div>

2021 ◽  
Author(s):  
William Lamb ◽  
Dallon Asnes ◽  
Jonathan Kupfer ◽  
Emma Lickey ◽  
Jeremy Bakken ◽  
...  

<div>Hot spotting in photovoltaic (PV) panels causes physical damage, power loss, reduced lifetime reliability, and increased manufacturing costs. The problem arises routinely in defect-free standard panels; any string of cells that receives uneven illumination can develop hot spots, and the temperature rise often exceeds 100°C in conventional silicon panels despite on-panel bypass diodes, the standard mitigation technique. Bypass diodes limit the power dissipated in a cell subjected to reverse bias, but they do not prevent hot spots from forming. An alternative control method has been suggested by Kernahan [1] that senses in real time the dynamic conductance |dI/dV| of a string of cells and adjusts its operating current so that a partially shaded cell is never forced into reverse bias. We start by exploring the behavior of individual illuminated PV cells when externally forced into reverse bias. We observe that cells can suffer significant heating and structural damage, with desoldering of cell-tabbing and discolorations on the front cell surface. Then we test PV panels and confirm Kernahan’s proposed panel-level solution that anticipates and prevents hot spots in real time. Simulations of cells and panels confirm our experimental observations and provide insights into both the operation of Kernahan’s method and panel performance.</div>


2020 ◽  
pp. 1-17
Author(s):  
T. Rogošić ◽  
B. Juričić ◽  
F. Aybek Çetek ◽  
Z. Kaplan

ABSTRACT Air traffic controller training is highly regulated but lacks prescribed common assessment criteria and methods to evaluate trainees at the level of basic training and consideration of how trainees in fluence flight efficiency. We investigated whether there is a correlation between two parameters, viz. the trainees’ assessment score and fuel consumption, obtained and calculated after real-time human-in-the-loop radar simulations within the ATCOSIMA project. Although basic training assessment standards emphasise safety indicators, it was expected that trainees with higher assessment scores would achieve better flight efficiency, i.e. less fuel consumption. However, the results showed that trainees’ assessment scores and fuel consumption did not correlate in the expected way, leading to several conclusions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Andrew T. Meek ◽  
Nils M. Kronenberg ◽  
Andrew Morton ◽  
Philipp Liehm ◽  
Jan Murawski ◽  
...  

AbstractImportant dynamic processes in mechanobiology remain elusive due to a lack of tools to image the small cellular forces at play with sufficient speed and throughput. Here, we introduce a fast, interference-based force imaging method that uses the illumination of an elastic deformable microcavity with two rapidly alternating wavelengths to map forces. We show real-time acquisition and processing of data, obtain images of mechanical activity while scanning across a cell culture, and investigate sub-second fluctuations of the piconewton forces exerted by macrophage podosomes. We also demonstrate force imaging of beating neonatal cardiomyocytes at 100 fps which reveals mechanical aspects of spontaneous oscillatory contraction waves in between the main contraction cycles. These examples illustrate the wider potential of our technique for monitoring cellular forces with high throughput and excellent temporal resolution.


Author(s):  
Wolf Schulze ◽  
Maurizio Zajadatz ◽  
Michael Suriyah ◽  
Thomas Leibfried

AbstractA test bed for the evaluation of novel control methods of inverters for renewable power generation is presented. The behavior of grid-following and grid-forming control in a test scenario is studied and compared.Using a real-time capable control platform with a cycle time of 50 µs, control methods developed with Matlab/Simulink can be implemented. For simplicity, a three-phase 4‑quadrant voltage amplifier is used instead of an inverter. Thus, the use of modulation and switched power semiconductors can be avoided. In order to show a realistic behavior of a grid-side filter, passive components can be automatically connected as L‑, LC- or LCL-filter. The test bed has a nominal active power of 43.6 kW and a nominal voltage of 400 V.As state-of-the-art grid-following control method, a current control in the d/q-system is implemented in the test bed. A virtual synchronous machine, the Synchronverter, is used as grid-forming control method. In combination with a frequency-variable grid emulation, the behavior of both control methods is studied in the event of a load connection in an island grid environment.


Sign in / Sign up

Export Citation Format

Share Document