scholarly journals PHIL Infrastructure in CoSES Microgrid Lab

Author(s):  
Anurag Mohapatra ◽  
Vedran S. Peric ◽  
Thomas Hamacher

This paper describes the Power hardware-in-the-loop (PHIL) architecture and capacities of the CoSES laboratory at TU Munich. The lab brings together renewable resources, flexible grid topologies, fully controllable prosumer emulators, a real-time control environment, and an API access for external connection to the lab. The electrical and control design of the lab allows for sophisticated PHIL experiments with an user-friendly implementation. Two experiments are included, to validate the PHIL performance and demonstrate the use of PHIL infrastructure to investigate an OPF algorithm.

2021 ◽  
Author(s):  
Anurag Mohapatra ◽  
Vedran S. Peric ◽  
Thomas Hamacher

This paper describes the Power hardware-in-the-loop (PHIL) architecture and capacities of the CoSES laboratory at TU Munich. The lab brings together renewable resources, flexible grid topologies, fully controllable prosumer emulators, a real-time control environment, and an API access for external connection to the lab. The electrical and control design of the lab allows for sophisticated PHIL experiments with an user-friendly implementation. Two experiments are included, to validate the PHIL performance and demonstrate the use of PHIL infrastructure to investigate an OPF algorithm.


Author(s):  
Michael Gevelber ◽  
Donald Wroblewski ◽  
Michael Cannamela ◽  
Soumendra N. Basu ◽  
Dennis Radgowski ◽  
...  

Real-time control offers the potential to reduce plasma spray variations that affect yield and coating quality. Important factors for designing such controllers are discussed including sensor issues, dominant nonlinearities, and cross-coupling interactions. The performance of several alternative strategies to achieve better coating thickness control is evaluated.


Author(s):  
Michael Gevelber ◽  
Donald Wroblewski ◽  
Michael VanHout ◽  
Onomitra Ghosh ◽  
David Willoughby ◽  
...  

Real-time control offers the potential to reduce plasma spray variations that affect yield and coating quality. Important factors for designing such controllers are discussed including sensor issues, dominant nonlinearities, and cross-coupling interactions. The performance of several alternative strategies to achieve better coating thickness control are evaluated.


Author(s):  
Hamid Khakpour Nejadkhaki ◽  
John F. Hall ◽  
Minghui Zheng ◽  
Teng Wu

A platform for the engineering design, performance, and control of an adaptive wind turbine blade is presented. This environment includes a simulation model, integrative design tool, and control framework. The authors are currently developing a novel blade with an adaptive twist angle distribution (TAD). The TAD influences the aerodynamic loads and thus, system dynamics. The modeling platform facilitates the use of an integrative design tool that establishes the TAD in relation to wind speed. The outcome of this design enables the transformation of the TAD during operation. Still, a robust control method is required to realize the benefits of the adaptive TAD. Moreover, simulation of the TAD is computationally expensive. It also requires a unique approach for both partial and full-load operation. A framework is currently being developed to relate the TAD to the wind turbine and its components. Understanding the relationship between the TAD and the dynamic system is crucial in the establishment of real-time control. This capability is necessary to improve wind capture and reduce system loads. In the current state of development, the platform is capable of maximizing wind capture during partial-load operation. However, the control tasks related to Region 3 and load mitigation are more complex. Our framework will require high-fidelity modeling and reduced-order models that support real-time control. The paper outlines the components of this framework that is being developed. The proposed platform will facilitate expansion and the use of these required modeling techniques. A case study of a 20 kW system is presented based upon the partial-load operation. The study demonstrates how the platform is used to design and control the blade. A low-dimensional aerodynamic model characterizes the blade performance. This interacts with the simulation model to predict the power production. The design tool establishes actuator locations and stiffness properties required for the blade shape to achieve a range of TAD configurations. A supervisory control model is implemented and used to demonstrate how the simulation model blade performs in the case study.


1999 ◽  
Author(s):  
Kenneth Wong ◽  
Vinod J. Modi ◽  
Clarence W. de Silva ◽  
Arun K. Misra

Abstract This paper presents the design and development of a Multi-module Deployable Manipulator System (MDMS) as well as a dynamical formulation for it. The system is designed for experimental investigations aimed at dynamics and control of this variable geometry manipulator by implementing different control algorithms to regulate its performance. The manipulator operates in a horizontal plane and is unique in that it comprises of four modules, each of which has one revolute joint and one prismatic joint, connected in a chain topology. Each module has a slewing link of approximately 20cm length and is capable of extending by 15cm. The manipulator design involves the selection and sizing of actuators, the design of mounting and connecting components, and the selection of hardware as well as software for real-time control. The dynamical model is formulated using an O(N) algorithm, based on the Lagrangian approach and velocity transformations. The O(N) character is computationally efficient permitting real-time control of the system.


2007 ◽  
Vol 2007.82 (0) ◽  
pp. _11-19_
Author(s):  
Tomoaki Kobayashi ◽  
Junichi Maenishi ◽  
Joe Imae ◽  
Guisheng Zhai

2010 ◽  
Vol 61 (9) ◽  
pp. 2169-2175 ◽  
Author(s):  
A. Thornton ◽  
N. Sunner ◽  
M. Haeck

The use of the activated sludge process (ASP) for the nitrification/denitrification of wastewaters is commonplace throughout the UK and many other parts of the industrial world. Associated with this process are significant costs arising from aeration requirements and for selected sites, the need to provide an external carbon source. These costs can constitute up to of 50% of the total running cost of the whole plant and as such, any effort to reduce them could realise significant benefits. This paper investigates the use of real time control (RTC) using online sensors and control algorithms to optimise the operation of the ASP, leading to greater efficiency and sustainability. Trials were undertaken at full scale to assess the benefit of such a system at a 250,000 population equivalent (PE) works on the south coast of the UK, using Activated sludge model No.1 (ASM 1) as a basis for the control system. Initial results indicate that it is possible to significantly reduce both aeration and chemical consumption costs whilst still delivering the required effluent quality. Over the trial period the aeration requirements were consistently reduced by 20% whereas, a reduction in methanol consumption of in excess of 50% was observed.


Sign in / Sign up

Export Citation Format

Share Document