scholarly journals Morphological, biochemical and molecular hallmarks of programmed cell death in stigmatic papillae of Brassica oleracea L.

Caryologia ◽  
2021 ◽  
Vol 74 (1) ◽  
pp. 117-126
Author(s):  
Aslihan Çetinbaş-Genç ◽  
Cansu Bayam ◽  
Filiz Vardar

The aim of this study is to determine the programmed cell death hallmarks in the stigmatic papillae of Brassica oleracea L. The flower development was divided in two main stages; pre-anthesis and post-anthesis. Programmed cell death hallmarks were examined in parallel to these stages. At pre-anthesis, the stigmatic papillae were ovoid and their dense cytoplasm were rich in insoluble polysaccharide and protein. At post-anthesis, vacuolization and enlargement were quite evident in papillae. Besides, the protein content decreased, but reactive oxygen species increased in comparison to the pre-anthesis stage. Although no significant change in superoxide dismutase activity was detected, catalase activity decreased and hydrogen peroxide content increased at post-anthesis. DAPI stained nuclei appeared rounded and smooth appearance at pre-anthesis, however, some invaginations and fragmentation in nuclei were observed at post-anthesis. Although, TUNEL staining was negative at pre-anthesis, while TUNEL positive reaction was significant in the nuclei of papillae at post-anthesis. In comparison to the pre-anthesis, the number of fragmented nuclei monitored by DAPI and TUNEL staining increased at post-anthesis. 

2015 ◽  
Vol 66 (10) ◽  
pp. 2869-2876 ◽  
Author(s):  
Irene Serrano ◽  
María C. Romero-Puertas ◽  
Luisa M. Sandalio ◽  
Adela Olmedilla

Reproduction ◽  
2007 ◽  
Vol 134 (2) ◽  
pp. 241-252 ◽  
Author(s):  
A M Lobascio ◽  
F G Klinger ◽  
M L Scaldaferri ◽  
D Farini ◽  
M De Felici

We report a short-term culture system that allowsto define novel characteristic of programmed cell death (PCD) in fetal oocytes and to underscore newaspects of this process. Mouse fetal oocytes culturedin conditions allowingmeiotic prophase I progression underwent apoptotic degeneration waves as revealed by TUNEL staining. TEM observations revealed recurrent atypical apoptotic morphologies characterized by the absence of chromatin margination and nuclear fragmentation; oocytes with autophagic and necrotic features were also observed. Further characterization of oocyte death evidenced DNA ladder, Annexin V binding, PARP cleavage, and usually caspase activation (namely caspase-2). In the aim to modulate the oocyte death process, we found that the addition to the culture medium of the pancaspase inhibitors Z-VAD orcaspase-2-specific inhibitor Z-VDVAD resulted in a partial and transient prevention of this process. Oocyte death was significantly reduced by the antioxidant agent NAC and partly prevented by KL and IGF-I growth factors. Finally, oocyte apoptosis was reduced by calpain inhibitor I and increased by rapamycin after prolonged culture.These results support the notion that fetal oocytes undergo degeneration mostly by apoptosis. This process is, however, often morphologically atypical and encompasses other forms of cell death including caspase-independent apoptosis and autophagia. The observation that oocyte death occurs mainly at certain stages of meiosis and can only be attenuated by typical anti-apoptotic treatments favors the notion that it is controlled at least in part by stage-specific oocyte-autonomous meiotic checkpoints and when activated is little amenable to inhibition being the oocyte able to switch back and forth among different death pathways.


2021 ◽  
Vol 22 (23) ◽  
pp. 12942
Author(s):  
Chanjuan Ye ◽  
Shaoyan Zheng ◽  
Dagang Jiang ◽  
Jingqin Lu ◽  
Zongna Huang ◽  
...  

Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0208802 ◽  
Author(s):  
Fabrizio Araniti ◽  
Aitana Costas-Gil ◽  
Luz Cabeiras-Freijanes ◽  
Antonio Lupini ◽  
Francesco Sunseri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document