ANALYSIS OF METHODS AND PRESENTATION OF RESULTS OF EXPERIMENTAL RESEARCH OF LOW FREQUENCY GAS DYNAMIC PULSATIONS IN PIPELINES OF POWER PLANTS

Akustika ◽  
2021 ◽  
pp. 200-204
Author(s):  
Andrey Vasilyev

The results of analysis of Russian approaches and of experience of development of methods and of results of experimental research of low-frequency gas dynamic pressure pulsations in pipelines of power plants are described. Peculiarities of Russian standards and of the sanitary norms are considered. According to results of experimental researches is possible to conclude that the maximal vibration levels are observed on the frequencies 31,5 Hz and 40 Hz. The same results were obtained during the measurements of sound pressure level on the same experimental compressor mount. Earlier during the experiments on the same mount it was achieved that the maximal values of low frequency gas pressure pulsations are observed on the frequency 35 Hz. Thus, it was experimentally shown that gas pressure pulsations are making the main contribution into forming of low frequency sound and vibration of compressor mount.

Author(s):  
Henry A. Scarton ◽  
Kyle R. Wilt

Sound power levels including the distribution into octaves from a large 149 kW (200 horsepower) gyro rock crusher and separate asphalt plant are presented. These NIST-traceable data are needed for estimating sound pressure levels at large distances (such as occurs on adjoining property to a quarry) where atmospheric attenuation may be significant for the higher frequencies. Included are examples of the computed A-weighted sound pressure levels at a distance from the source, including atmospheric attenuation. Substantial low-frequency sound power levels are noted which are greatly reduced in the far-field A-weighted sound pressure level calculations.


2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879481 ◽  
Author(s):  
Enbin Liu ◽  
Shanbi Peng ◽  
Tiaowei Yang

When a natural gas transmission and distribution station performs a planned or emergency venting operation, the jet noise produced by the natural gas venting pipe can have an intensity as high as 110 dB, thereby severely affecting the production and living environment. Jet noise produced by venting pipes is a type of aerodynamic noise. This study investigates the mechanism that produces the jet noise and the radiative characteristics of jet noise using a computational fluid dynamics method that combines large eddy simulation with the Ffowcs Williams–Hawkings acoustic analogy theory. The analysis results show that the sound pressure level of jet noise is relatively high, with a maximum level of 115 dB in the low-frequency range (0–1000 Hz), and the sound pressure level is approximately the average level in the frequency range of 1000–4000 Hz. In addition, the maximum and average sound pressure levels of the noise at the same monitoring point both slightly decrease, and the frequency of the occurrence of a maximum sound pressure level decreases as the Mach number at the outlet of the venting pipe increases. An increase in the flow rate can result in a shift from low-frequency to high-frequency noise. Subsequently, this study includes a design of an expansion-chamber muffler that reduces the jet noise produced by venting pipes and an analysis of its effectiveness in reducing noise. The results show that the expansion-chamber muffler designed in this study can effectively reduce jet noise by 10–40 dB and, thus, achieve effective noise prevention and control.


2018 ◽  
Vol 37 (2) ◽  
pp. 373-384
Author(s):  
Hiroshi Sato ◽  
Jongkwan Ryu ◽  
Kenji Kurakata

An on-site system for measuring low-frequency noise and complainant's responses to the low-frequency noise was developed to confirm whether the complainant suffer from the environmental noise with low-frequency components. The system suggests several methods to find the dominant frequency and major sound pressure level spectrum of the noise causing annoyance. This method can also yield a quantified relationship (correlation coefficient and percentage of response to the noise) between physical noise properties and the complainant’s responses. The advantage of this system is that it can easily find the relationship between the complainant’s response to the acoustic event of the houses and the physical characteristics of the low-frequency noise, such as the time trends and frequency characteristics. This paper describes the developed system and provides an example of the measurement results.


2007 ◽  
Vol 26 (2) ◽  
pp. 81-89 ◽  
Author(s):  
A T Moorhouse ◽  
D C Waddington ◽  
M D Adams

Results of laboratory tests are presented in which 18 subjects, including some low frequency noise sufferers, were presented with low frequency sounds with varying degrees of fluctuation. Thresholds of acceptability were obtained for each sound and each subject, using the method of adjustment. These thresholds were then normalised to individual low frequency hearing threshold. It was found that sufferers tend to set thresholds of acceptability closer to their hearing threshold than other subject groups. Also, acceptability thresholds were set on average 5dB lower for fluctuating sounds. It is proposed that a sound should be considered fluctuating when the difference between L10 and L90 exceeds 5dB, and when the rate of change of the ‘Fast’ response sound pressure level exceeds 10dB/s


1966 ◽  
Vol 9 (1) ◽  
pp. 150-160 ◽  
Author(s):  
J. Jerger ◽  
B. Alford ◽  
A. Coats ◽  
B. French

Nineteen human subjects were exposed to repeated three-minute tones in the sound pressure level range from 119 to 144 dB and the frequency range from 2–22 cps. The tones were produced in an acoustic test booth by a piston-cylinder arrangement, driven by a variable speed direct current motor. Eight subjects showed no adverse effects. Temporary threshold shifts (TTS) of 10 to 22 dB in the frequency range from 3 000 to 8 000 cps were observed in the remaining 11 subjects. In addition, the 7 and 12 cps signals produced considerable masking over the frequency range from 100 to 4 000 cps.


1982 ◽  
Vol 104 (3) ◽  
pp. 633-641 ◽  
Author(s):  
H. E. Gallus ◽  
H. Grollius ◽  
J. Lambertz

In axial-flow turbomachines considerable dynamic blade loads and noise production occur as a result of the unsteady blade row interaction between rotor and stator blades. This paper presents results of midspan measurements of the dynamic pressure distribution on the stator blade surface (fixed number of blades) for various rotor-blade numbers and various axial clearances between rotor and stator. For this purpose, one stator blade had been provided with eleven semiconductor pressure transducers in the midspan section. Simultaneously, the sound pressure level was measured at two axial distances downstream of the stator by four condensator microphones distributed along the circumference in each of the two sections and mounted flush with the wall surface. The wake-flow distribution downstream of the rotor could be obtained by a rotating three-hole pressure probe. The results of the corresponding dynamic pressure-measurements and noise measurements are discussed and compared with results from theory.


Author(s):  
Adrian Sescu ◽  
Abdollah A. Afjeh

A Computational Fluid Dynamics tool is used to determine the detailed flow field developing around two-blade horizontal axis wind turbines (HAWT) in downwind and upwind configurations. The resulting flow field around the wind turbine is used to evaluate the low-frequency noise radiating to the far-field, using an acoustic analogy method. The influence of the variation of wind velocity and rotational speed of the rotor to the sound pressure level is analyzed. This paper shows that the tower shadow effect of a downwind configuration wind turbine generates higher aerodynamic infrasound when compared to a corresponding upwind configuration. For validation, a comparison between numerical results and experimental data consisting of sound pressure levels measured from a two-blade downwind configuration wind turbine is presented.


Sign in / Sign up

Export Citation Format

Share Document