Effects of Very Low Frequency Tones on Auditory Thresholds

1966 ◽  
Vol 9 (1) ◽  
pp. 150-160 ◽  
Author(s):  
J. Jerger ◽  
B. Alford ◽  
A. Coats ◽  
B. French

Nineteen human subjects were exposed to repeated three-minute tones in the sound pressure level range from 119 to 144 dB and the frequency range from 2–22 cps. The tones were produced in an acoustic test booth by a piston-cylinder arrangement, driven by a variable speed direct current motor. Eight subjects showed no adverse effects. Temporary threshold shifts (TTS) of 10 to 22 dB in the frequency range from 3 000 to 8 000 cps were observed in the remaining 11 subjects. In addition, the 7 and 12 cps signals produced considerable masking over the frequency range from 100 to 4 000 cps.

2018 ◽  
Vol 10 (8) ◽  
pp. 168781401879481 ◽  
Author(s):  
Enbin Liu ◽  
Shanbi Peng ◽  
Tiaowei Yang

When a natural gas transmission and distribution station performs a planned or emergency venting operation, the jet noise produced by the natural gas venting pipe can have an intensity as high as 110 dB, thereby severely affecting the production and living environment. Jet noise produced by venting pipes is a type of aerodynamic noise. This study investigates the mechanism that produces the jet noise and the radiative characteristics of jet noise using a computational fluid dynamics method that combines large eddy simulation with the Ffowcs Williams–Hawkings acoustic analogy theory. The analysis results show that the sound pressure level of jet noise is relatively high, with a maximum level of 115 dB in the low-frequency range (0–1000 Hz), and the sound pressure level is approximately the average level in the frequency range of 1000–4000 Hz. In addition, the maximum and average sound pressure levels of the noise at the same monitoring point both slightly decrease, and the frequency of the occurrence of a maximum sound pressure level decreases as the Mach number at the outlet of the venting pipe increases. An increase in the flow rate can result in a shift from low-frequency to high-frequency noise. Subsequently, this study includes a design of an expansion-chamber muffler that reduces the jet noise produced by venting pipes and an analysis of its effectiveness in reducing noise. The results show that the expansion-chamber muffler designed in this study can effectively reduce jet noise by 10–40 dB and, thus, achieve effective noise prevention and control.


1991 ◽  
Vol 157 (1) ◽  
pp. 35-46 ◽  
Author(s):  
WILLIAM R. LANGBAUER ◽  
KATHARINE B. PAYNE ◽  
RUSSELL A. CHARIF ◽  
LISA RAPAPORT ◽  
FERREL OSBORN

We conducted 58 playback experiments with free-ranging African elephants in Etosha National Park, Namibia, to estimate the distance over which some of their low-frequency calls are audible to other elephants. We broadcast pre-recorded elephant calls to elephants that were 1.2 and 2.0 km from the speaker while making simultaneous video and audio recordings of their behavior. In order to reduce the risk of habituation, we used a variety of call types as stimuli. Elephants responded to playbacks at both 1.2 and 2.0 km, with a full response consisting of the elephant vocalizing, lifting and spreading its ears, remaining motionless in this position (‘freezing’), moving the head from side to side (‘scanning’) and, in the case of males responding to female estrous calls, orienting to and finally walking 1 km or more towards the loudspeaker. We analyzed our data quantitatively for three of these responses. The occurrence of each behavior increased substantially immediately after playbacks. Owing to limitations of the loudspeaker, we were only able to broadcast calls at half the sound pressure level (i.e. −6dB) of the strongest calls we have recorded. Since sound at the frequencies of these calls is predicted to suffer from little, if any, attenuation in excess of that caused by spherical spreading, we estimate these calls to be audible to elephants at least 4 km from the source (twice the distance over which we documented responses). These results are consistent with the hypothesis that the very low-frequency calls of elephants function in communication between individuals and groups of elephants separated by distances of several kilometers.


Acoustics ◽  
2020 ◽  
Vol 2 (4) ◽  
pp. 803-811
Author(s):  
Rick de Vos ◽  
Nikolaos M. Papadakis ◽  
Georgios E. Stavroulakis

A handclap is a convenient and easily available source for room acoustic measurements. If used correctly (e.g., application of optimal hand configuration) it can provide usable results for the measurement of acoustic parameters, within an expected deviation. Its biggest drawbacks are the low sound pressure level (especially in the low frequency range) as well as its low repeatability. With this in mind, this paper explores the idea of testing a handclap with a glove in order to assess the effect on its source characteristics. For this purpose, measurements were performed with 12 participants wearing leather gloves. Sound levels were compared with simple handclaps without gloves, and between grouped results (overall A-weighted SPL, octave bands, 1/3 octave bands). Measurements were also performed several times to evaluate the effect on repeatability. Results indicate that the use of leather gloves can increase the sound levels of a handclap by 10 dB and 15 dB in the low frequency ranges (63 Hz and 125 Hz octave bands, respectively). Handclaps with leather gloves also point toward improved repeatability, particularly in the low-frequency part of the frequency spectrum. In conclusion, compared to simple handclaps without gloves, evidence from this study supports the concept that handclaps with leather gloves can be used in engineering practices for improved room acoustic measurements of room impulse response.


2017 ◽  
Vol 42 (2) ◽  
pp. 199-205
Author(s):  
Adam Dudarewicz ◽  
Kamil Zaborowski ◽  
Paulina Rutkowska-Kaczmarek ◽  
Małgorzata Zamojska-Daniszewska ◽  
Mariola Śliwińska-Kowalska ◽  
...  

Abstract The aim of the study was to assess the hearing threshold levels (HTLs) in employees exposed to noise generated by low-frequency ultrasonic technological equipment in comparison with the HTLs of workers exposed to audible noise at the similar A-weighted equivalent-continuous sound pressure level. The study includes measurements of ultrasonic and audible noise at workplaces and hearing tests, i.e. conventional pure-tone audiometry and extended high-frequency audiometry. The study group comprised 90 workers, aged 41.4±10.0 years (mean±SD), exposed for 17.3±9.8 years to noise generated by ultrasonic devices at mean daily noise exposure level (‹LEX,8h›) of 80.6±2.9 dB. The reference group consists of 156 subjects, exposed to industrial noise (without ultrasonic components) at similar A-weighted equivalent-continuous sound pressure level (‹LEX,8h› = 81.8±2.7 dB), adjusted according to age (39.8±7.7 years), gender and job seniority (14.0±7.0 years). This group was selected from database collected in the Nofer Institute of Occupational Medicine. Audiometric hearing threshold levels in the frequency range of 0.5-6 kHz were similar in both groups, but in the frequency range of 8-12.5 kHz they were higher in the group of employees exposed to ultrasonic noise. The findings suggest that differences in the hearing threshold (at high frequencies) in analyzed groups may be due to differences in spectral composition of noise and show the need to continue the undertaken studies.


2020 ◽  
Vol 18 (2) ◽  
pp. 1451-1463
Author(s):  
Witold Mikulski

Abstract Purpose The purpose of the research is to work out a method for determining the sound insulation of acoustic enclosures for industrial sources emitting noise in the frequency range of 10–40 kHz and apply the method to measure the sound insulation of acoustic enclosures build of different materials. Methods The method is developed by appropriate adaptation of techniques applicable currently for sound frequencies of up to 10 kHz. The sound insulation of example enclosures is determined with the use of this newly developed method. Results The research results indicate that enclosures (made of polycarbonate, plexiglass, sheet aluminium, sheet steel, plywood, and composite materials) enable reducing the sound pressure level in the environment for the frequency of 10 kHz by 19–25 dB with the reduction increasing to 40–48 dB for the frequency of 40 Hz. The sound insulation of acoustic enclosures with a sound-absorbing material inside reaches about 38 dB for the frequency of 10 kHz and about 63 dB for the frequency of 40 kHz. Conclusion Some pieces of equipment installed in the work environment are sources of noise emitted in the 10–40 kHz frequency range with the intensity which can be high enough to be harmful to humans. The most effective technical reduction of the associated risks are acoustic enclosures for such noise sources. The sound pressure level reduction obtained after provision of an enclosure depends on its design (shape, size, material, and thickness of walls) and the noise source frequency spectrum. Realistically available noise reduction values may exceed 60 dB.


Author(s):  
Henry A. Scarton ◽  
Kyle R. Wilt

Sound power levels including the distribution into octaves from a large 149 kW (200 horsepower) gyro rock crusher and separate asphalt plant are presented. These NIST-traceable data are needed for estimating sound pressure levels at large distances (such as occurs on adjoining property to a quarry) where atmospheric attenuation may be significant for the higher frequencies. Included are examples of the computed A-weighted sound pressure levels at a distance from the source, including atmospheric attenuation. Substantial low-frequency sound power levels are noted which are greatly reduced in the far-field A-weighted sound pressure level calculations.


2020 ◽  
Author(s):  
Caron E.J. Vossen ◽  
Corrado Cimarelli ◽  
Alec J. Bennett ◽  
André Geisler ◽  
Damien Gaudin ◽  
...  

<p>Volcanoes are increasingly better monitored around the world. Nonetheless, the detection and monitoring of volcanic ash plumes remains difficult, especially in remote areas. Intense electrical activity and lightning in volcanic plumes suggests that electrical monitoring of active volcanoes can aid the detection of ash emissions in near real-time. Current very low frequency and wide-band thunderstorm networks have proven to be able to detect plumes of large magnitude. However, the time delay and the relatively high number of non-detected explosive episodes show that the applicability of these systems to the detection of smaller (and often more frequent) ash-rich explosive events is limited. Here we use a different type of thunderstorm detector to observe electrical discharges generated by the persistent Vulcanian activity of Minamidake crater at Sakurajima volcano in Japan. The sensors consist of two antennas that measure the induced current due to the change in electric field with time. In contrast to the current thunderstorm networks, these sensors measure within the extremely low frequency range (1-45 Hz) and can detect lightning up to 35 kilometres distance.</p><p>Two detectors were installed at a distance of 3 and 4 kilometres from Minamidake crater and recorded almost continuously since July 2018. Within this period, the ash plumes reached a maximum height of 5.5 kilometres above the crater rim. Using a volcanic lightning detection algorithm and the catalogue of volcanic explosions compiled by the Japan Meteorological Agency (JMA), the number of electrical discharges was determined for each individual explosive event. In addition, the start of electrical discharges was compared to the eruption onset estimated by the JMA.</p><p>Preliminary results show that the detector closest to the crater had the highest detection efficiency. It detected electrical discharges during 60% of the eruptions listed by the JMA. This is significantly higher than for the World Wide Lightning Location Network, which detected electrical discharges (in the very low frequency range) within 20 kilometres of Sakurajima for less than 0.005% of the eruptions. Furthermore, the results show that for 40% of the detected eruptions, electrical discharges were detected before the estimated JMA timing. Hence, electrical discharges can mark the inception of the explosion with a higher precision and are an indication of ash emission. This demonstrates the value of the cost-effective sensors used here as a monitoring tool at active volcanoes.</p>


2018 ◽  
Vol 37 (2) ◽  
pp. 373-384
Author(s):  
Hiroshi Sato ◽  
Jongkwan Ryu ◽  
Kenji Kurakata

An on-site system for measuring low-frequency noise and complainant's responses to the low-frequency noise was developed to confirm whether the complainant suffer from the environmental noise with low-frequency components. The system suggests several methods to find the dominant frequency and major sound pressure level spectrum of the noise causing annoyance. This method can also yield a quantified relationship (correlation coefficient and percentage of response to the noise) between physical noise properties and the complainant’s responses. The advantage of this system is that it can easily find the relationship between the complainant’s response to the acoustic event of the houses and the physical characteristics of the low-frequency noise, such as the time trends and frequency characteristics. This paper describes the developed system and provides an example of the measurement results.


Sign in / Sign up

Export Citation Format

Share Document