scholarly journals Application of Double Difference Tomography Method to Determine The 3D Seismic Wave Velocity Structure of GoLF Geothermal Field

2018 ◽  
Vol 16 (1) ◽  
pp. 27
Author(s):  
Kana N. Naamin ◽  
David P. Sahara ◽  
Andri D. Nugraha ◽  
Irvan Ramadhan

GoLF geothermal eld is located in South Solok Regency, 150 km SE of Padang city, West Sumatra.Geology, geochemistry and geophysical surveys had been conducted since 2008. Geophysical survey which had been performed including microseismic and magnetotelluric surveys. Seismic velocity structure modelling need to be conducted in order to characterize geothermal reservoir.This study uses microseismic data recorded from 36 seismometers which installed in two time recording time ranges; from September 2010 to April 2011 and from September 2012 to December 2013, with microseismic events recorded respectively 135 and 2692 events. To maximize the result of picking waveform, the data is processed using the Master Event Cross Correlation method to update the catalog data and get more accurate arrival time. Furthermore, the author used TomoDD software to produce hypocenter relocation and the 3D velocity structure under GoLF's geothermal reservoir. The results of the 3D velocity model can be used to determine the structure and phase of the fluid under GoLF geothermal field.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
I. Bernal ◽  
H. Tavera

In this study, we present a velocity model for the area of the 2007 Pisco-Peru earthquake ( Mw = 8.0 ) obtained using a double-difference tomography algorithm that considers aftershocks acquired for 6 months. The studied area is particularly interesting because it lies on the northern edge of the Nazca Ridge, in which the subduction of a large bathymetric structure is the origin of geomorphological features of the central coast of Peru. Relocated seismicity is used to infer the geometry of the subduction slab on the northern flank of the Nazca Ridge. The results prove that the geometry is continuous but convex because of the subduction of the ridge, thereby explaining the high uplift rates observed in this area. Our inferred distribution of seismicity agrees with both the coseismic and postseismic slip distributions.


Geophysics ◽  
2019 ◽  
Vol 84 (1) ◽  
pp. B41-B57 ◽  
Author(s):  
Himanshu Barthwal ◽  
Mirko van der Baan

Microseismicity is recorded during an underground mine development by a network of seven boreholes. After an initial preprocessing, 488 events are identified with a minimum of 12 P-wave arrival-time picks per event. We have developed a three-step approach for P-wave passive seismic tomography: (1) a probabilistic grid search algorithm for locating the events, (2) joint inversion for a 1D velocity model and event locations using absolute arrival times, and (3) double-difference tomography using reliable differential arrival times obtained from waveform crosscorrelation. The originally diffusive microseismic-event cloud tightens after tomography between depths of 0.45 and 0.5 km toward the center of the tunnel network. The geometry of the event clusters suggests occurrence on a planar geologic fault. The best-fitting plane has a strike of 164.7° north and dip angle of 55.0° toward the west. The study region has known faults striking in the north-northwest–south-southeast direction with a dip angle of 60°, but the relocated event clusters do not fall along any mapped fault. Based on the cluster geometry and the waveform similarity, we hypothesize that the microseismic events occur due to slips along an unmapped fault facilitated by the mining activity. The 3D velocity model we obtained from double-difference tomography indicates lateral velocity contrasts between depths of 0.4 and 0.5 km. We interpret the lateral velocity contrasts in terms of the altered rock types due to ore deposition. The known geotechnical zones in the mine indicate a good correlation with the inverted velocities. Thus, we conclude that passive seismic tomography using microseismic data could provide information beyond the excavation damaged zones and can act as an effective tool to complement geotechnical evaluations.


2021 ◽  
Vol 9 ◽  
Author(s):  
Hidayat Hidayat ◽  
Andri Dian Nugraha ◽  
Awali Priyono ◽  
Marjiyono Marjiyono ◽  
Januar H. Setiawan ◽  
...  

The Banyumas Basin is a tertiary sedimentary basin located in southern Central Java, Indonesia. Due to the presence of volcanic deposits, 2-D seismic reflection methods cannot provide a good estimation of the sediment thickness and the subsurface geology structure in this area. In this study, the passive seismic tomography (PST) method was applied to image the 3-D subsurface Vp, Vs, and Vp/Vs ratio. We used 70 seismograph borehole stations with a recording duration of 177 days. A total of 354 events with 9, 370 P and 9, 368 S phases were used as input for tomographic inversion. The checkshot data of a 4, 400-meter deep exploration well (Jati-1) located within the seismic network were used to constrain the shallow crustal layer of the initial 1-D velocity model. The model resolution of the tomographic inversions was assessed using the checkerboard resolution test (CRT), the diagonal resolution element (DRE), and the derivative weight sum (DWS). Using the obtained Vp, Vs, and Vp/Vs ratio, we were able to sharpen details of the geological structures within the basin from previous geological studies, and a fault could be well-imaged at a depth of 4 km. We interpreted this as the main dextral strike-slip fault that controls the pull apart process of the Banyumas Basin. The thickness of the sediment layers, as well as its layering, were also could be well determined. We found prominent features of the velocity contrast that aligned very well with the boundary between the Halang and Rambatan formations as observed in the Jati-1 well data. Furthermore, an anticline structure, which is a potential structural trap for the petroleum system in the Banyumas Basin, was also well imaged. This was made possible due to the dense borehole seismographic stations which were deployed in the study area.


Geophysics ◽  
2019 ◽  
Vol 85 (1) ◽  
pp. U21-U29
Author(s):  
Gabriel Fabien-Ouellet ◽  
Rahul Sarkar

Applying deep learning to 3D velocity model building remains a challenge due to the sheer volume of data required to train large-scale artificial neural networks. Moreover, little is known about what types of network architectures are appropriate for such a complex task. To ease the development of a deep-learning approach for seismic velocity estimation, we have evaluated a simplified surrogate problem — the estimation of the root-mean-square (rms) and interval velocity in time from common-midpoint gathers — for 1D layered velocity models. We have developed a deep neural network, whose design was inspired by the information flow found in semblance analysis. The network replaces semblance estimation by a representation built with a deep convolutional neural network, and then it performs velocity estimation automatically with recurrent neural networks. The network is trained with synthetic data to identify primary reflection events, rms velocity, and interval velocity. For a synthetic test set containing 1D layered models, we find that rms and interval velocity are accurately estimated, with an error of less than [Formula: see text] for the rms velocity. We apply the neural network to a real 2D marine survey and obtain accurate rms velocity predictions leading to a coherent stacked section, in addition to an estimation of the interval velocity that reproduces the main structures in the stacked section. Our results provide strong evidence that neural networks can estimate velocity from seismic data and that good performance can be achieved on real data even if the training is based on synthetics. The findings for the 1D problem suggest that deep convolutional encoders and recurrent neural networks are promising components of more complex networks that can perform 2D and 3D velocity model building.


2016 ◽  
Vol 47 (3) ◽  
pp. 1269 ◽  
Author(s):  
O. Stavroulopoulou ◽  
E. Sokos ◽  
N. Martakis ◽  
G. A. Tselentis

A dense microseismic network was installed in Northwestern Greece for a period of eleven months. A total of 1368 events were recorded and located using a 1D model. These events were also used to derive a 3D velocity model for the area. This work presents results from further processing of the data using (a) simple location method of events in a 1D medium through Hypo71 standard procedure; (b) location via the probabilistic, non-linear earthquake location method in 3D medium; (c) relocation of the events using the Double - Difference method in 1D medium; and (d) the same relocation  procedure  invoking  3D  medium.  The  application  of  different  location methodologies results in slightly different locations, which are evaluated using as criterion the compactness of hypocenter distribution. The three point method was used in order to derive linear characteristics from the hypocenter distribution and the final results were compared against the focal mechanisms of the events as computed using the polarity method and the 3D velocity model. The combination of accurately computed hypocenters and focal mechanisms provides important information for the seismotectonics of Epirus


2021 ◽  
pp. 2614-2626
Author(s):  
Ahmed S. AL-Banna ◽  
Hassan E. Al-Assady

      A 3D velocity model was created by using stacking velocity of 9 seismic lines and average velocity of 6 wells drilled in Iraq. The model was achieved by creating a time model to 25 surfaces with an interval time between each two successive surfaces of about 100 msec.  The summation time of all surfaces reached about 2400 msec, that was adopted according to West Kifl-1 well, which penetrated to a depth of 6000 m, representing the deepest well in the study area. The seismic lines and well data were converted to build a 3D cube time model and the velocity was spread on the model. The seismic inversion modeling of the elastic properties of the horizon and well data was applied to achieve a corrected velocity cube. Then, the velocity cube was converted to a time model and, finally, a corrected 3D depth model was obtained. This model shows that the western side of the study area, which is a part of the stable shelf, is characterized by relatively low thickness and high velocity layers. While the eastern side of the study area, which is a part of the Mesopotamian, is characterized by high thickness and low velocity of the Cretaceous succession. The Abu Jir fault is considered as a boundary between the stable and unstable shelves in Iraq, situated at the extreme west part of the study area. The area of relatively high velocity gradient is considered as the limit of the western side of the Mesopotamian basin. This area extends from Najaf-Karbala axis in the west to the Euphrates River in the east. It is found that the 3D stacking velocity model can be used to obtain good results concerning the tectonic boundary.  


2021 ◽  
Author(s):  
Taghi Shirzad ◽  
Stanisław Lasocki ◽  
Beata Orlecka‐Sikora

<p>While the classical tomography approaches, e.g., P-, S-, and/or surface-wave traveltime tomography, provide a general structure of the Earth’s interior, new developments in signal processing of interferometry approaches are needed to obtain a high-resolution velocity structure. If the number of earthquakes is adequate, the virtual seismometer method may be a solution in regions with sparse instrumental coverage. Theoretically, the empirical Green’s functions between a pair of events can be retrieved using earthquake’s cross-correlations. Here, an event interferometry approach was used on a very small scale around Prati-9 and Prati-29 injection wells in the NW of The Geysers Geothermal Field. The study region experienced intense injection-induced seismicity. We selected all events with location uncertainties less than 50 m in a cuboid of the horizontal side ~1 × ~2 km and the vertical edge at depths between 1.0 and 2.0 km. The cuboid was cut into 100m thick layers, and we applied to events from each layer criteria enabling a quasi 2D approach. After calculating the Rayleigh wave group velocity dispersion curves, further processing was performed at a 0.2s period, selected based on the sensitivity kernel criterion. Finally, the relative velocity model of each layer at the depth z was obtained by subtracting the velocity model of the just overlying layer (at the depth z-100m) from the model of this layer. Our resultant velocity model in the study area indicated four low-velocity anomalies. The first one can be linked by the two layers interface topography variation at the top of the cuboid (depth 1000 m). The secondary faults can cause the second low-velocity anomaly. The other two anomalies look to result from fluid injection into Prati-9 and Prati-29 wells. <br>This work was supported under the S4CE: "Science for Clean Energy" project, which has received funding from the European Union’s Horizon 2020 research and innovation program, under grant agreement No 764810.</p>


Sign in / Sign up

Export Citation Format

Share Document