scholarly journals Bench-scale Electrochemical Treatment of Co-contaminated Clayey Soil

2021 ◽  
Author(s):  
Austin Pelletier ◽  
◽  
Amanda Hohner ◽  
Idil Deniz Akin ◽  
Indranil Chowdhury ◽  
...  

Industrial soil contamination is frequently unearthed by transportation agencies during construction within the right-of-way. As a result, transportation agencies may experience construction delays. Soils co-contaminated with high-molecular-weight polycyclic aromatic hydrocarbons (HMW-PAHs) and metals are commonly encountered in Illinois and exhibit recalcitrance towards conventional treatment technologies. This issue is exacerbated in the fine-grained soils common to Illinois, where low-permeability and immense sorption capacity increase treatment complexity, cost, and duration. Contaminated sites are spatially and temporally restrictive and require rapid in situ treatments, whereas conventional soil remediation requires 1 to 3 years on average. Consequently, transportation agencies typically pursue excavation and off-site disposal for expediency. However, this solution is expensive, so a comparatively expeditious and affordable treatment alternative is needed to combat the increasing cost of hazardous waste disposal. The objective of this work was to develop an accelerated in situ treatment approach adaptable for use at any construction site to cost-effectively remove HMW-PAHs and metals from clayey soil. It was hypothesized that an in situ electrochemical treatment which augments electrokinetics with H2O2 could remediate both HMW-PAHs and metals in less than a month. Bench-scale reactors resemblant of field-scale in situ electrokinetic systems were designed and fabricated to assess the electrochemical treatment of clayey soils contaminated with HMW-PAHs and metals. Pyrene, chromium, and manganese were used as model contaminants, spiked into kaolinite as a model clay. Electrokinetics were imposed by a low-intensity electrical field distributed by graphite rods. Electrolytic H2O2 systems were leveraged to distribute electrical current and facilitate contaminant removal. Average contaminant removals of 100%, 42.3%, and 4.5% were achieved for pyrene, manganese, and chromium, respectively. Successful development of this bench-scale treatment approach will serve to guide transportation agencies in field-scale implementation. The results from this work signify that electrochemical systems that leverage eco-friendly oxidant addition can replace excavation and disposal as a means of addressing clayey soils co-contaminated with HMW-PAHs and metals.

2012 ◽  
Vol 193-194 ◽  
pp. 1010-1013
Author(s):  
Shu Qing Zhao

The construct to precast pile in thick clayey soil can cause the accumulation of excess pore water pressure. The high excess pore pressure can make soil, buildings and pipes surrounded have large deflection, even make them injured. Combining with actual projects, this paper presents an in-situ model test on the changes of excess pore water pressure caused by precast pile construct. It is found that the radius of influence range for single pile driven is about 15m,the excess pore water pressure can reach or even exceed the above effective soil pressure, and there are two relatively stable stages.


2004 ◽  
Vol 38 (5) ◽  
pp. 1281-1288 ◽  
Author(s):  
Matthew B. Mesarch ◽  
Cindy H. Nakatsu ◽  
Loring Nies

1994 ◽  
Vol 29 (10) ◽  
pp. 1251-1274 ◽  
Author(s):  
Céser Gómez-Lahoz ◽  
James M. Rodríguez-Maroto ◽  
David J. Wilson∗
Keyword(s):  

2018 ◽  
Vol 12 (1) ◽  
pp. 39-46
Author(s):  
Maisaroh Maisaroh

Sintesis asam 9,10-dihidroksi stearat (DHSA) dari asam oleat terepoksidasi merupakan salah satu upaya yang akan meningkatkan penggunaan, diversifikasi dan nilai tambah minyak kelapa sawit. Scaling up proses epoksidasi asam oleat dari skala laboratorium ke bench scale (kapasitas 5 L) terjadi perubahan volume dan geometri dari peralatan yang akan mempengaruhi proses epoksidasi itu sendiri sehingga perlu dilakukan observasi terhadap parameter-parameter yang akan digunakan dalam basic dan engineering design. Tujuan dari penelitian ini adalah melakukan scaling up proses konsistensi dari skala laboratorium ke bench scale (kap. 5 L) epoksidasi asam oleat sebagai produk antara sintesis DHSA dalam pengembangan produk turunan kelapa sawit yang akan digunakan sebagai bahan kosmetik. Scaling Up epoksidasi asam oleat dengan asam performat yang dibentuk secara in situ dilakukan menggunakan reaktor 5 liter dengan perbandingan mol asam oleat : asam format : hidrogen peroksida 50% = 1 : 1,25 : 6. Produk epoksidasi ini akan dilanjutkan untuk dihidroksilasi pada sintesis DHSA sebagai bahan kosmetik.


2022 ◽  
Author(s):  
Ziyan Li ◽  
Derek Elsworth ◽  
Chaoyi Wang

Abstract Fracturing controls rates of mass, chemical and energy cycling within the crust. We use observed locations and magnitudes of microearthquakes (MEQs) to illuminate the evolving architecture of fractures reactivated and created in the otherwise opaque subsurface. We quantitatively link seismic moments of laboratory MEQs to the creation of porosity and permeability at field scale. MEQ magnitudes scale to the slipping patch size of remanent fractures reactivated in shear - with scale-invariant roughnesses defining permeability evolution across nine decades of spatial volumes – from centimeter to decameter scale. This physics-inspired seismicity-permeability linkage enables hybrid machine learning (ML) to constrain in-situ permeability evolution at verifiable field-scales (~10 m). The ML model is trained on early injection and MEQ data to predict the dynamic evolution of permeability from MEQ magnitudes and locations, alone. The resulting permeability maps define and quantify flow paths verified against ground truths of permeability.


Geoderma ◽  
2012 ◽  
Vol 170 ◽  
pp. 195-205 ◽  
Author(s):  
Gary C. Heathman ◽  
Michael H. Cosh ◽  
Eunjin Han ◽  
Thomas J. Jackson ◽  
Lynn McKee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document