scholarly journals HYBRID SOLUTION FOR TWO-WAY INDUCED SHAPE MEMORY ACTUATOR

2020 ◽  
Vol 26 (1) ◽  
pp. 34-36
Author(s):  
Girolamo Costanza ◽  
Maria Elisa Tata

The actuation capability and the reliability of hybrid composites activated by shape memory alloys are discussed in this work. The manufacturing of compact and safe actuators has been possible employing thermo-activated SMA which allows the polymer-based matrix to undertake many geometries. Different technological procedures are proposed for the manufacturing of this type of composites and the production problems are discussed too. The adoption of non-metallic materials as deformation recovery elements, even if at present they do not allow a complete reversibility of the imposed deformation, represent an interesting research field, due to their properties of lightness, flexibility and low cost.

2012 ◽  
Vol 78 ◽  
pp. 31-39 ◽  
Author(s):  
Ausonio Tuissi ◽  
Paola Bassani ◽  
Carlo Alberto Biffi

Foams and other highly porous metallic materials with cellular structures are known to have many interesting combinations of physical and mechanical properties. That makes these systems very attractive for both structural and functional applications. Cellular metals can be produced by several methods including liquid infiltration of leachable space holders. In this contribution, results on metal foams of Cu based shape memory alloys (SMAs) processed by molten metal infiltration of SiO2 particles are presented. By using this route, highly homogeneous CuZnAl SMA foams with a spherical open-cell morphologies have been manufactured and tested. Morphological, thermo-mechanical and cycling results are reported.


Author(s):  
Martin Gurka ◽  
Sebastian Nissle ◽  
Moritz Hübler ◽  
Max Kaiser

High performance airfoils with laminar airflow exhibit minimum drag and maximum lift, but tend to sudden stall due to flow separation at low air speed. This requires an increased approach speed of the aircraft, resulting in less steep approaches and a higher noise exposure of the surroundings. New active vortex generators, deployed only on demand at low speed, energizing the boundary layer of air flow and reducing flow separation, can help to overcome this critical situation. Active hybrid composites, combining the actuation capability of shape memory alloys (SMA) with the possibility of tailoring the compliance of fiber reinforced polymers (FRP) on the materials level, provide an active aerodynamic system with high lightweight potential and small space requirements. Being one of the first applications of active hybrid structures from SMA and FRP we will demonstrate the potential of this new technology with an integrated system of active vortex generators for a glider. In this contribution we present - the design process, based on a FE-model and careful characterization of the actuating SMA and the composite material - manufacturing relevant aspects for reliable series production - the testing of single vortex generators in lab scale under aerodynamic load - and an overview of the whole system.


2003 ◽  
Author(s):  
Setsuo Kajiwara ◽  
Albert L. Baruj ◽  
Takehiko Kikuchi ◽  
Norio Shinya

2004 ◽  
Vol 855 ◽  
Author(s):  
Alicia M. Ortega ◽  
Carl P. Frick ◽  
Jeffrey Tyber ◽  
Ken Gall ◽  
Hans J. Maier

ABSTRACTThe purpose of this study is to investigate the structure and properties of polycrystalline NiTi in its cast form. Although it is commonly stated in the literature that cast NiTi has poor shape-memory behavior, this study demonstrates that with appropriate nano/micro structural design, cast NiTi possesses excellent shape-memory properties. Cast NiTi shape-memory alloys may give rise to a new palette of low-cost, complex-geometry components. Results from two different nominal compositions of cast NiTi are presented: 50.1 at.%Ni and 50.9 at.%Ni. The cast NiTi showed a spatial variance in grain size and a random grain orientation distribution throughout the cast material. However, small variances in the thermo-mechanical response of the cast material resulted. Transformation temperatures were slightly influenced by the radial location from which the material was extracted from the casting, showing a change in Differential Scanning Calorimetry peak diffuseness as well as a change in transformation sequence for the 50.9 at.%Ni material. Mildly aged 50.9 at.%Ni material was capable of full shape-memory strain recovery after being strained to 5% under compression, while the 50.1 at.%Ni demonstrated residual plastic strains of around 1.5%. The isotropic and symmetric response under tensile and compressive loading is a result of the measured random grain orientation distribution. The favorable recovery properties in the cast material are primarily attributed to the presence of nanometer scale precipitates, which inhibit dislocation motion and favor the martensitic transformation.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 708 ◽  
Author(s):  
Andrea Sellitto ◽  
Aniello Riccio

The development of structures able to autonomously change their characteristics in response to an external simulation is considered a promising research field. Indeed, these structures, called smart structures, can be adopted to improve the aerodynamic performance of air and land vehicles. In this work, an overview and future applications of Shape Memory Alloys (SMA)-based smart structures are presented. The use of SMA materials seems to be very promising in several engineering sectors. Advanced SMA-based devices, designed to improve the aerodynamic performance of vehicles by modifying the shape of the spoiler and the rear upper panel, are briefly introduced and discussed in this paper. Indeed, a simplified model simulating the SMA mechanical behavior has been considered to demonstrate the feasibility of the introduced smart structures for adaptive aerodynamic applications. Numerical simulations of the investigated structures are provided as a justification of the proposed designs.


2013 ◽  
Vol 371 ◽  
pp. 368-372 ◽  
Author(s):  
Nicanor Cimpoeşu ◽  
Adela Ioana Ursanu ◽  
Sergiu Stanciu ◽  
Ramona Cimpoeşu ◽  
Boris Constantin ◽  
...  

Shape memory alloys (SMAs) are commonly used in micro-electro-mechanical systems (MEMS). Having the unique shape memory, super-elastic affects and now damping capacity SMAs have become an important smart material for a broad range of engineering applications in last years. Copper based SMAs are promising alloys, based on the obtaining price and good characteristic properties. Shape memory alloys as thin films are used for fast actuation in applications due to their high surface to volume ratio comparing to bulk SMAs. In this paper two shape memory alloys based on copper, proposed as targets in different deposition processes to obtain MEMS and with different chemical composition, are analyzed through scanning electrons microscope (SEM), XRD and EDAX considerations after water quenching and recovery heat treatments. The martensite variants are dimensioned and 3D aspects are also analyzed for both metallic materials. The metallic phases obtained after heat treatment are determined and compare in both thermal influenced cases.


2015 ◽  
Vol 813-814 ◽  
pp. 240-245 ◽  
Author(s):  
A.G. Shivasiddaramaiah ◽  
U.S. Mallikarjun ◽  
S. Prashantha

Shape memory materials are stimuli-responsive materials. They are widely used in military, medical, safety, and robotics applications. Until recently, only Ni-Ti based SMA’s are commercially used due to its relatively ease of manufacturing. However, the exorbitantly high cost of Ni-Ti based SMA limits its application to niche markets such as medical stents, aerospace and defence. Recently, it is found that Cu based alloys exhibit shape memory behavior. Out of which, Cu-Al-Be-Mn is most interesting SMA in terms of less process complexity and low cost. Cu–Al–Be-Mn shape memory alloys in the range of 09–15 wt.% of aluminium and 0.1-0.4 wt.% of Beryllium and 0.1 to 0.3 wt.% of Manganese, exhibiting β-phase at high temperatures and manifesting shape memory effect upon quenching to lower temperatures, were prepared through ingot metallurgy. The alloy ingots were homogenized followed by step quenching so as to obtain a structure that is completely martensitic. They were subsequently characterized by X-ray diffractogram (XRD), Differential Scanning Calorimetry (DSC) and Optical Microscope (OM). The shape memory properties of the alloys were studied by bend test. This paper emphasizes the synthesis and characterization of the Cu-Al-Be shape memory alloys.


Sign in / Sign up

Export Citation Format

Share Document