Cast NiTi Shape-Memory Alloys

2004 ◽  
Vol 855 ◽  
Author(s):  
Alicia M. Ortega ◽  
Carl P. Frick ◽  
Jeffrey Tyber ◽  
Ken Gall ◽  
Hans J. Maier

ABSTRACTThe purpose of this study is to investigate the structure and properties of polycrystalline NiTi in its cast form. Although it is commonly stated in the literature that cast NiTi has poor shape-memory behavior, this study demonstrates that with appropriate nano/micro structural design, cast NiTi possesses excellent shape-memory properties. Cast NiTi shape-memory alloys may give rise to a new palette of low-cost, complex-geometry components. Results from two different nominal compositions of cast NiTi are presented: 50.1 at.%Ni and 50.9 at.%Ni. The cast NiTi showed a spatial variance in grain size and a random grain orientation distribution throughout the cast material. However, small variances in the thermo-mechanical response of the cast material resulted. Transformation temperatures were slightly influenced by the radial location from which the material was extracted from the casting, showing a change in Differential Scanning Calorimetry peak diffuseness as well as a change in transformation sequence for the 50.9 at.%Ni material. Mildly aged 50.9 at.%Ni material was capable of full shape-memory strain recovery after being strained to 5% under compression, while the 50.1 at.%Ni demonstrated residual plastic strains of around 1.5%. The isotropic and symmetric response under tensile and compressive loading is a result of the measured random grain orientation distribution. The favorable recovery properties in the cast material are primarily attributed to the presence of nanometer scale precipitates, which inhibit dislocation motion and favor the martensitic transformation.

2004 ◽  
Vol 443-444 ◽  
pp. 267-270 ◽  
Author(s):  
H. Sitepu ◽  
Heinz Günter Brokmeier

The orientation distribution function (ODF) of the textured polycrystalline nickel titanium (NiTi) shape memory alloys (SMAs) was determined from the measured austenitic (B2)pole-figures by neutron diffraction. The texture results showed that neutron diffraction is an excellent tool to investigate the minor variation in the texture of NiTi alloys, which is very sensitive to the variation of the content of nickel in the materials. Moreover, the alloys crystallographic phase fraction and texture were calculated from Rietveld refinement with generalized spherical harmonic (GSH) description for the measured complete neutron powder diffraction (ND) spectrum, rather than a few isolated peaks, during in-situ temperature-induced martensitic transformation. The phase fraction results are consistent with the differential scanning calorimeter (DSC) curves.


2015 ◽  
Vol 813-814 ◽  
pp. 240-245 ◽  
Author(s):  
A.G. Shivasiddaramaiah ◽  
U.S. Mallikarjun ◽  
S. Prashantha

Shape memory materials are stimuli-responsive materials. They are widely used in military, medical, safety, and robotics applications. Until recently, only Ni-Ti based SMA’s are commercially used due to its relatively ease of manufacturing. However, the exorbitantly high cost of Ni-Ti based SMA limits its application to niche markets such as medical stents, aerospace and defence. Recently, it is found that Cu based alloys exhibit shape memory behavior. Out of which, Cu-Al-Be-Mn is most interesting SMA in terms of less process complexity and low cost. Cu–Al–Be-Mn shape memory alloys in the range of 09–15 wt.% of aluminium and 0.1-0.4 wt.% of Beryllium and 0.1 to 0.3 wt.% of Manganese, exhibiting β-phase at high temperatures and manifesting shape memory effect upon quenching to lower temperatures, were prepared through ingot metallurgy. The alloy ingots were homogenized followed by step quenching so as to obtain a structure that is completely martensitic. They were subsequently characterized by X-ray diffractogram (XRD), Differential Scanning Calorimetry (DSC) and Optical Microscope (OM). The shape memory properties of the alloys were studied by bend test. This paper emphasizes the synthesis and characterization of the Cu-Al-Be shape memory alloys.


2008 ◽  
Vol 47-50 ◽  
pp. 877-880
Author(s):  
Bijan Azadi ◽  
Nimal Rajapakse ◽  
Daan M. Maijer

Experiments have shown that the localization of transformation in NiTi shape memory alloys (SMAs) is an important factor in determining their mechanical response during cyclic loading. A one-dimensional constitutive model for the cyclic behavior of SMAs is presented that takes into account the localization of transformation and transformation-induced plasticity. An internal variable is introduced that characterizes the amount of temperature-dependent cyclic change. The results of simulations at two different temperatures are also presented.


2021 ◽  
Vol 342 ◽  
pp. 06007
Author(s):  
Nicoleta-Monica Lohan ◽  
Çtefan-Lucian Toma ◽  
Mihai Popa ◽  
Alin Marian Cazac ◽  
Bogdan Pricop

NiTi based shape memory alloys are one of the most intensely studied alloys from its class. Therefore, diverse commercial applications have been developed due to certain properties such as: shape memory effect, superelasticity and corrosion resistance. Currently, the main applications of NiTi alloys are automotive manufacturing and aerospace actuators, biomedical devices or pipe couplings. In recent years, NiTi shape memory alloys have been alloyed with a third element in order to improve the above-mentioned properties. In order to investigate the influence of the alloying elements on the thermal behavior of NiTi alloys, the addition of the third alloying element (Ta and Nb) is under investigation in the present study. The thermal behavior of the three alloys (NiTi, NiTiNb and NiTiTa) was studied by differential scanning calorimetry. Following the experiments, it was observed that the addition of the third alloying element influences the critical transformation temperatures.


Author(s):  
Austin Cox ◽  
Theocharis Baxevanis ◽  
Dimitris Lagoudas

The effect of precipitation on the thermo-mechanical properties of Ni-rich near-equiatomic NiTi Shape Memory Alloys (SMAs) is investigated via the finite element method. The thermo-mechanical response is simulated using a Representative Volume Element (RVE), which takes into account the structural effect of the precipitates, as well as the effect of the Ni-concentration gradient in the matrix. The Ni-distribution profile is evaluated using Fick’s law for diffusion. The obtained results reproduce several of the experimentally observed precipitation-induced changes on the transformation behavior characteristics of these materials.


2012 ◽  
Vol 1373 ◽  
Author(s):  
E. Nuñez-Mendoza ◽  
E. López Cuellar ◽  
Walman Benicio de Castro ◽  
B. López Walle

AbstractThe usual process to produce NiTi shape memory alloys is vacuum induction melting (VIM). Currently a new alternative process to produce NiTi shape memory alloys by rapid solidification structures called Melt Spinning has been studied. In this work, results of ribbons with a chemical composition Ti-55.2 Ni (wt %) alloy prepared by this method are presented. The ribbons are prepared at two different linear velocities: 30 m/s and 50 m/s. After that, samples are heat treated at 350 °C during 1 hour. The alloys are characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction. According to the cycled DSC test, transformation peaks are associated with the B2→R→B19´ transformation during cooling and B19´→R→B2 during heating, showing transformation in multi-peaks. The martensite B19´ start (Ms) is varying from 35 to 39°C and the martensite finish (Mf) from 15 to 21°C, 42-47°C for austenite B2 start (As) and 65-69°C for austenite finish (Af) approximately. All analyzed ribbons show very similar values of transformation hysteresis temperatures at 50% of transformation of around 28°C. In order to change solidification rate, linear velocity is varied during the melt spinning process. Results indicate that linear velocity affects directly the temperature of transformation. When the linear velocity is increasing, crystallographic Ti-rich precipitates are developed, but dendritic growth disappears, changing the microstructure and decreasing these transformation temperatures. Then changes in linear velocity can dramatically affect shape memory properties, and in this case a velocity of 50 m/s produces a more homogenous alloy.


Sign in / Sign up

Export Citation Format

Share Document