Synthesis and Characterization of Cu-Al-Be-Mn Quaternary Shape Memory Alloys Prepared by Induction Melting Technique

2015 ◽  
Vol 813-814 ◽  
pp. 240-245 ◽  
Author(s):  
A.G. Shivasiddaramaiah ◽  
U.S. Mallikarjun ◽  
S. Prashantha

Shape memory materials are stimuli-responsive materials. They are widely used in military, medical, safety, and robotics applications. Until recently, only Ni-Ti based SMA’s are commercially used due to its relatively ease of manufacturing. However, the exorbitantly high cost of Ni-Ti based SMA limits its application to niche markets such as medical stents, aerospace and defence. Recently, it is found that Cu based alloys exhibit shape memory behavior. Out of which, Cu-Al-Be-Mn is most interesting SMA in terms of less process complexity and low cost. Cu–Al–Be-Mn shape memory alloys in the range of 09–15 wt.% of aluminium and 0.1-0.4 wt.% of Beryllium and 0.1 to 0.3 wt.% of Manganese, exhibiting β-phase at high temperatures and manifesting shape memory effect upon quenching to lower temperatures, were prepared through ingot metallurgy. The alloy ingots were homogenized followed by step quenching so as to obtain a structure that is completely martensitic. They were subsequently characterized by X-ray diffractogram (XRD), Differential Scanning Calorimetry (DSC) and Optical Microscope (OM). The shape memory properties of the alloys were studied by bend test. This paper emphasizes the synthesis and characterization of the Cu-Al-Be shape memory alloys.

2004 ◽  
Vol 855 ◽  
Author(s):  
Alicia M. Ortega ◽  
Carl P. Frick ◽  
Jeffrey Tyber ◽  
Ken Gall ◽  
Hans J. Maier

ABSTRACTThe purpose of this study is to investigate the structure and properties of polycrystalline NiTi in its cast form. Although it is commonly stated in the literature that cast NiTi has poor shape-memory behavior, this study demonstrates that with appropriate nano/micro structural design, cast NiTi possesses excellent shape-memory properties. Cast NiTi shape-memory alloys may give rise to a new palette of low-cost, complex-geometry components. Results from two different nominal compositions of cast NiTi are presented: 50.1 at.%Ni and 50.9 at.%Ni. The cast NiTi showed a spatial variance in grain size and a random grain orientation distribution throughout the cast material. However, small variances in the thermo-mechanical response of the cast material resulted. Transformation temperatures were slightly influenced by the radial location from which the material was extracted from the casting, showing a change in Differential Scanning Calorimetry peak diffuseness as well as a change in transformation sequence for the 50.9 at.%Ni material. Mildly aged 50.9 at.%Ni material was capable of full shape-memory strain recovery after being strained to 5% under compression, while the 50.1 at.%Ni demonstrated residual plastic strains of around 1.5%. The isotropic and symmetric response under tensile and compressive loading is a result of the measured random grain orientation distribution. The favorable recovery properties in the cast material are primarily attributed to the presence of nanometer scale precipitates, which inhibit dislocation motion and favor the martensitic transformation.


2010 ◽  
Vol 442 ◽  
pp. 309-315 ◽  
Author(s):  
S.A. Rizvi ◽  
T.I. Khan

Nitinol (NiTi) shape memory alloys are widely used in a variety of biomedical applications, such as dental implants, cervical and lumbar vertebral replacements, joint replacements and stents. In this study, commercially pure Ti and Ni foils ~100 um thick were diffusion bonded in vacuum. The experimental conditions were optimized to achieve a near equiatomic composition to produce NiTi SMA thin foil of approx. 5-8 micron thick. The cross-sectional surfaces of joint were subjected to metallographic investigation using optical microscope after grinding, polishing and etching. Scanning electron microscope equipped with EDX system was utilized to characterize the bonded layer and compositional analysis. Differential scanning calorimetry (DSC) technique was employed to determine the shape memory effect. The samples were subjected to X-ray diffraction analysis in order to establish phase structures formed during the diffusion bonding stage. An ultra fast femto-second laser facility was utilized to ensure the production of complex shapes or patterns within micron scale.


2020 ◽  
Vol 17 (3(Suppl.)) ◽  
pp. 0961
Author(s):  
Ali Abadi Aljubouri ◽  
Safa hasan Mohammed ◽  
Mudhafar ali Mohammed

Sn effect on the phase transformation behavior, microstructure, and micro hardness of equiatomic Ni-Ti shape memory alloy was studied. NiTi and NiTiSn alloys were produced using vacuum induction melting process with alloys composition (50% at. Ni, 50% at.Ti) and (Ni 48% at., Ti 50% at., Sn 2% at.). The characteristics of both alloys were investigated by utilizing Differential Scanning Calorimetry, X- ray Diffraction Analysis, Scanning Electron Microscope, optical microscope and vicker's micro hardness test. The results showed that adding Sn element leads to decrease the phase transformation temperatures evidently. Both alloy samples contain NiTi matrix phase and Ti2Ni secondary phase, but the Ti2Ni phase content decreases with Sn addition and this is one of the reasons that leads to decrease the micro hardness of alloy with adding Sn element in a noticeable manner. The micro hardness decreases from 238.74 for NiTi equiatomic alloy to 202 for NiTiSn alloy after heat treatment.


2005 ◽  
Vol 888 ◽  
Author(s):  
K. Jai Ganesh ◽  
Arunya Suresh

ABSTRACTShape Memory Alloys (SMAs) are versatile functional materials with an I.Q of their own. This class of SMART Materials exhibit unique properties like superelasticity and shape memory effect (SME) which have made them suitable for potential applications. Although Ni-Ti SMAs have attracted attention ever since their inception in 1962, Cu based SMAs due to their ease in fabrication, cost effectiveness and high temperature properties are gaining immense popularity. This research aimed at the fabrication of Cu-14 Al-3.5 Ni (wt %) Shape Memory Alloy by a simple cost effective route and its characterization to correlate its structure and properties. The alloy of desired composition was melted in an Electric Resistance Furnace at 1473 K and cast in a metallic mould. Homogenization was carried out at 1123 K for twenty four hours followed by analysis of chemical composition by Optical Emission Spectroscopy. Transformation temperatures of the alloy were determined using Differential Scanning Calorimetry. Heat treatment operations were carried out at 1273 K for one hour followed by quenching in different media. Optical and SEM micrographs were taken at various magnifications and the formation of self accommodating martensite was observed which was further confirmed by X-Ray Diffraction technique. Further improvements in the mechanical properties of the alloy by quaternary additions of Mn and Ti have been cited. Finally, SME was observed in a rolled strip of the alloy, thus concreting the obtained results.


2008 ◽  
Vol 59 ◽  
pp. 92-100
Author(s):  
Ana Cris R. Veloso ◽  
Rodinei Medeiros Gomes ◽  
Dagoberto Brandao Santos ◽  
I.C.E.G. Lima ◽  
Severino Jackson Guedes de Lima ◽  
...  

In this study Cu-13.8Al alloys with 3.0% and 4.0% (wt%) of nickel were obtained by induction melting. The effect of homogenization heat treatment and hot rolling on the transformation temperatures of these alloys was investigated by differential scanning calorimetry. It was observed that the transformation temperatures increase with long homogenization times, and also by hot rolling, and this displacement is smaller for alloys with 4.0% of nickel. In both alloys in the quenched state, the reversion reaction is characterized by the appearance of multiple peaks attributed to the presence of martensites 2H and 18R. The influence of the rolling process must be associated with the loss of Ni and Al during the process.


2021 ◽  
Vol 11 (5) ◽  
pp. 12495-12505

Lateral difluoro substituent liquid crystal based on a three-aromatic core has been synthesized. It has been designed to correlate the molecular structure and mesomorphism with reference to the difluoro substituent and -COO- linkage group. This compound was characterized by elementary analyses and spectroscopic techniques such as FTIR and 1H-NMR. The synthesis compound's mesomorphic behavior was studied by polarizing optical microscope, differential scanning calorimetry, and dielectric measurements. The recent investigation reveals only SmB phase.


2015 ◽  
Vol 813-814 ◽  
pp. 213-217 ◽  
Author(s):  
A.G. Shivasiddaramaiah ◽  
Singh Prashant ◽  
S.Y. Manjunath ◽  
U.S. Mallikarjun

Copper based shape memory alloys are the alloys prepared with the combination of 66-88 wt% of copper, 10-14 wt% of aluminum, 0.3-0.6 wt% of beryllium and 0.1-0.4 wt% of manganese in the induction furnace through ingot metallurgy. The prepared SMAs is subjected to homogenization, it was observed that the samples exhibits Beta phase at high temperature and shape memory effect after going through step quenching to a low temperature. Microstructure and Shape memory effect was studied with the help of optical microscope and bend test respectively. It was seen that with increase in wt % of manganese the shape memory effect also increases.


Author(s):  
Şahide Nevin BALO ◽  
Abdulvahap ORHAN

Gamma radiation is a type of radiation that can change the structural properties of materials. Many physical and structural properties of metals and alloys change due to defects in their crystal structures in response to irradiation. Shape memory alloys (SMAs) are functional materials and are used in mechanical devices for monitoring nuclear facilities. In this study, copper-based SMAs were used. Copper-based SMAs are very sensitive to alloying elements and small changes in element percentages. Cu-11.6Al-0.42Be, Cu-11.8Al-0.47Be, Cu-13Al-4Ni, and Cu-13.5Al-4Ni (wt%) SMA samples were irradiated with a fixed radiation dose of 50 kGy. The effect of irradiation on the thermodynamic parameters and structural properties of copper-based SMAs was investigated. The effects of irradiation on thermodynamic parameters were determined by differential scanning calorimetry (DSC). Structural examinations were made by X-ray diffraction (XRD) and optical microscope observations. Microhardness measurements were taken. The results obtained for Cu-based SMAs were evaluated both as homogeneous and irradiated samples and according to alloying elements.


2012 ◽  
Vol 1373 ◽  
Author(s):  
E. Nuñez-Mendoza ◽  
E. López Cuellar ◽  
Walman Benicio de Castro ◽  
B. López Walle

AbstractThe usual process to produce NiTi shape memory alloys is vacuum induction melting (VIM). Currently a new alternative process to produce NiTi shape memory alloys by rapid solidification structures called Melt Spinning has been studied. In this work, results of ribbons with a chemical composition Ti-55.2 Ni (wt %) alloy prepared by this method are presented. The ribbons are prepared at two different linear velocities: 30 m/s and 50 m/s. After that, samples are heat treated at 350 °C during 1 hour. The alloys are characterized by Scanning Electron Microscopy (SEM), Differential Scanning Calorimetry (DSC) and X-Ray Diffraction. According to the cycled DSC test, transformation peaks are associated with the B2→R→B19´ transformation during cooling and B19´→R→B2 during heating, showing transformation in multi-peaks. The martensite B19´ start (Ms) is varying from 35 to 39°C and the martensite finish (Mf) from 15 to 21°C, 42-47°C for austenite B2 start (As) and 65-69°C for austenite finish (Af) approximately. All analyzed ribbons show very similar values of transformation hysteresis temperatures at 50% of transformation of around 28°C. In order to change solidification rate, linear velocity is varied during the melt spinning process. Results indicate that linear velocity affects directly the temperature of transformation. When the linear velocity is increasing, crystallographic Ti-rich precipitates are developed, but dendritic growth disappears, changing the microstructure and decreasing these transformation temperatures. Then changes in linear velocity can dramatically affect shape memory properties, and in this case a velocity of 50 m/s produces a more homogenous alloy.


Sign in / Sign up

Export Citation Format

Share Document