scholarly journals Effects of Magnesium Sulfate Therapy on GCS Scores in Patients with Severe Traumatic Brain Injury

2021 ◽  
Vol 24 (4) ◽  
pp. 322-327
Author(s):  
Kazim Ali ◽  
Muhammad Irfan ◽  
Rabia Abbas

Objective:  Traumatic brain injury (TBI) is the number one cause of death under 44 years of age; in spite of this fact, there is no standard available pharmacological agent for the treatment of brain injury. We evaluated the effectiveness of magnesium sulfate treatment for the management and outcome of TBI. Material and Methods:  The prospective cases (n = 60) of TBI were included with non-probability consecutive sampling. They received standard protocol treatment for TBI and magnesium sulfate as an add on therapy. GCS was noted on two occasions, at the time of admission and on the 3rd day. T-test was used to compare the results and for identification of significance/insignificance results. Results:  Mean age of the patients was 37.12 ± 13.25 years. Majority were male (68.3%), while females were 31.7%. Mean duration of an elapsed post traumatic brain injury was 5.06 ± 2.32 hours. Mean GCS before magnesium sulfate treatment (on admission) was 5.46 ± 1.521; mean Glasgow coma (GCS) after magnesium sulfate treatment (on 3rd day) was 8.03 ± 2.56. There existed a significant difference between the GCS scores at the time of admission and on 3rd day (p value < 0.0001). Mean GCS was 7.69 ± 2.55 in age < 30 years and it was 8.29 ± 2.57 in age > 30 years, but this difference was not statistically significant.  Conclusion:  A significant improvement was found in the GCS after magnesium sulfate therapy in patients with TBI.

2019 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Laith Al-Ameri ◽  
Talib Mohsin ◽  
Ali Abdul Wahid

(1) Background: Sleeping disorders are frequently reported following traumatic brain injury (TBI). Different forms of sleeping disorders have been reported, such as sleepiness, insomnia, changes in sleeping latency, and others. (2) Methods: A case-control study with 62 patients who were victims of mild or moderate TBI with previous admissions to Iraqi tertiary neurosurgical centers were enrolled as the first group, and 158 patients with no history of trauma were considered as the control. All were 18 years of age or older, and the severity of the trauma and sleep disorders was assessed. The Pittsburgh sleep quality index was used to assess sleep disorders with average need for sleep per day and average sleep latency were assessed in both groups. Chi-square and t-test calculations were used to compare different variables. (3) Results: 39 patients (24.7%) of the controlled group experienced sleeping disorders compared to TBI group with 45 patients (72.6%), P-value < 0.00001. A total of 42 patients were diagnosed on admission as having a mild degree of TBI (mean GCS 13.22 ± 1.76) and 20 patients were diagnosed with moderate TBI (mean GCS11.05 ± 1.14. 27). A total of 27 (46.28%) patients with mild severity TBI and 18 patients (90%) of moderate severity were considered to experience sleeping disorders, P-value 0.0339. Each of the mild and moderate TBI subgroups show a P-value < 0.00001 compared to the control group. Average sleep hours needed per day for TBI and the control were 8.02 ± 1.04 h and 7.26 ± 0.58 h, respectively, P-value < 0.00001. Average sleep latency for the TBI and the control groups were 13.32 ± 3.16 min and 13.93 ± 3.07 min respectively, P-value 0.065. (4) Conclusion: Sleep disturbances are more common following mild and moderate TBI three months after the injury with more hours needed for sleep per day and no significant difference in sleep latency. Sleep disturbances increase in frequency with the increase in the severity of TBI.


2007 ◽  
Vol 8 (1) ◽  
pp. 82
Author(s):  
JoAnne E. Natale ◽  
Anne-Marie Guerguerian ◽  
Jill G. Joseph ◽  
Robert McCarter ◽  
Cheng Shao ◽  
...  

2018 ◽  
Vol 46 (4) ◽  
pp. 1505-1516
Author(s):  
Bing Xue ◽  
Shiyan Ruan ◽  
Ping Xie ◽  
Kaixuan Yan ◽  
Zhi'e Gu ◽  
...  

Objective This study was performed to evaluate the effect of two different methods of controlling glycemic variability (GV) in patients with severe traumatic brain injury (STBI) undergoing surgery. Methods Patients with STBI were randomly grouped into a conventional adjustment process (CAP) group and modified Leuven’s adjustment process (mLAP) group. Each group included 50 patients. Blood glucose levels were continuously monitored and data were recorded and analyzed. Results The mean blood glucose level was stable in both groups for 5 days postoperatively with no significant difference. The standard deviation of the blood glucose level, mean amplitude of glycemic excursions, and glycemic lability index were significantly higher in the CAP than mLAP group for the first 2 days. In the final 3 days, no significant differences were observed between the two groups. The incidence of hypoglycemia was significantly higher in the CAP than mLAP group on the first day. This value gradually declined during the following 4 days, but the difference between the two groups was not significant. Conclusion The mLAP produced more favorable results than the CAP for GV control in the early stage after surgery for STBI.


2005 ◽  
Vol 103 (2) ◽  
pp. 233-238 ◽  
Author(s):  
Tobias Clausen ◽  
Oscar Luis Alves ◽  
Michael Reinert ◽  
Egon Doppenberg ◽  
Alois Zauner ◽  
...  

Object. Glycerol is considered to be a marker of cell membrane degradation and thus cellular lysis. Recently, it has become feasible to measure via microdialysis cerebral extracellular fluid (ECF) glycerol concentrations at the patient's bedside. Therefore the aim of this study was to investigate the ECF concentration and time course of glycerol after severe traumatic brain injury (TBI) and its relationship to patient outcome and other monitoring parameters. Methods. As soon as possible after injury for up to 4 days, 76 severely head-injured patients were monitored using a microdialysis probe (cerebral glycerol) and a Neurotrend sensor (brain tissue PO2) in uninjured brain tissue confirmed by computerized tomography scanning. The mean brain tissue glycerol concentration in all monitored patients decreased significantly from 206 ± 31 µmol/L on Day 1 to 9 ± 3 µmol/L on Day 4 after injury (p < 0.0001). Note, however, that there was no significant difference in the time course between patients with a favorable outcome (Glasgow Outcome Scale [GOS] Scores 4 and 5) and those with an unfavorable outcome (GOS Scores 1–3). Significantly increased glycerol concentrations were observed when brain tissue PO2 was less than 10 mm Hg or when cerebral perfusion pressure was less than 70 mm Hg. Conclusions. Based on results in the present study one can infer that microdialysate glycerol is a marker of severe tissue damage, as seen immediately after brain injury or during profound tissue hypoxia. Given that brain tissue glycerol levels do not yet add new clinically significant information, however, routine monitoring of this parameter following traumatic brain injury needs further validation.


2016 ◽  
Vol 33 (9) ◽  
pp. 825-831 ◽  
Author(s):  
Yvette Alway ◽  
Kate Rachel Gould ◽  
Adam McKay ◽  
Lisa Johnston ◽  
Jennie Ponsford

Neurosurgery ◽  
2017 ◽  
Vol 64 (CN_suppl_1) ◽  
pp. 249-250
Author(s):  
Yirui Sun ◽  
Jian Yu ◽  
Qiang Yuan ◽  
Jin Hu

Abstract INTRODUCTION Seizure is a common complication for severe traumatic brain injury (TBI). Valproic acid (VPA) is a first-line antiepileptic drug, though its metabolism is affected by genetic polymorphisms and varies between individuals. The aim of this study was to investigate such association and to explore its influence on the occurrence of early post-traumatic seizure. METHODS A case control study was conducted from 2012 to 2016 recruiting adult patients with severe TBI. Continuous electroencephalograph (EEG) monitoring was performed for 7 days. Genetic polymorphisms in UGT1A6, UGT2B7, CYP2C9, and CYP2C19 were analyzed in association with daily VPA plasma concentrations, adjusted dosages, and occurrence seizures. RESULTS >Among the 395 recruited patients, eight-three (21%) had early post-traumatic seizure, of which 30 (36.14%) were non-convulsive. Most seizures were first detected on day 1 (34.94%) and day 2 (46.99%) after injury. Patients with seizure had longer ICU length of stay and relatively lower VPA plasma concentrations. Patients with UGT1A6_19T>G/541A>G/552A>C double heterozygosities or CYP2C9 extensive metabolizers (EMs) initially had lower adjusted VPA plasma concentrations (power >0.99) and accordingly require higher VPA dosages during later time of treatment (power >0.99). The odds ratio indicated a higher risk of early post-traumatic seizure occurrence in male patients (OR 1.96, 95% CI 1.01-3.81, P = 0.043), age over 65 (OR 2.13, 95% CI 1.01-4.48), and with UGT1A6_19T>G/541A>G/552A>C double heterozygosities (OR 2.38, 95% CI 1.11-5.10, P = 0.02). CONCLUSION Continuous EEG monitoring are necessary to detect both convulsive and non-convulsive early post-traumatic seizures in severe TBI patients. UGT1A6/CYP2C9 polymorphisms have influence on VPA metabolism. UGT1A6_19T>G/541A>G/552A>C double heterozygositie is associated with occurrence of early post-traumatic seizures in addition to patients' age and gender. Further investigations with larger sample size are required to confirm the difference.


Sign in / Sign up

Export Citation Format

Share Document