DEVELOPMENT OF RECONFIGURABLE DEVICES BASED ON PROGRAMMABLE LOGIC INTEGRATED CIRCUITS

Author(s):  
А.А. Пирогов ◽  
Ю.А. Пирогова ◽  
С.А. Гвозденко ◽  
Д.В. Шардаков ◽  
Б.И. Жилин

Цифровая фильтрация распознаваемых сигналов является непременной процедурой при обнаружении и распознавании сообщений. Под фильтрацией понимают любое преобразование сигналов, при котором во входной последовательности обрабатываемых данных целенаправленно изменяются определенные соотношения между различными параметрами сигналов. Системы, избирательно меняющие форму сигналов, устраняющие или уменьшающие помехи, извлекающие из сигналов определенную информацию и т.п., называют фильтрами. Соответственно, фильтры с любым целевым назначением являются частным случаем систем преобразования сигналов. Программируемые логические интегральные схемы (ПЛИС) представляют собой конфигурируемые интегральные схемы, логика работы которых определяется посредством их программирования. Применение ПЛИС для задач цифровой обработки сигналов позволяет получать устройства, способные менять конфигурацию, подстраиваться под определенную задачу за счет их гибко изменяемой, программируемой структуры. При разработке сложных устройств могут применяться в качестве компонентов для проектирования готовые блоки - IP-ядра или сложно-функциональные блоки (СФ-блоки). Использование программных СФ-блоков позволяет наиболее эффективно задействовать их в конечной структуре, в значительной степени сократить затраты на проектирование. Цель работы состоит в построении RTL модели СФ-блока цифровой обработки сигналов, его верификации как на логическом уровне, так и физическом Digital filtering of recognized signals is an indispensable procedure for the detection and recognition of messages. Filtering is understood as any transformation of signals in which certain relationships between different signal parameters are purposefully changed in the input sequence of the processed data. Systems that selectively change the shape of signals, eliminate or reduce interference, extract certain information from the signals, and so on, are called filters. Accordingly, filters with any purpose are a special case of signal conversion systems. Programmable logic integrated circuits (FPGAs) are configurable integrated circuits whose logic is defined through programming. The use of FPGAs for digital signal processing tasks makes it possible to obtain devices capable of changing the configuration, adapting to a specific task due to their flexibly changeable, programmable structure. When developing complex devices, ready-made blocks - IP-cores or complex-functional blocks (SF blocks) - can be used as components for design. The use of software SF-blocks allows them to be used most effectively in the final structure, to a significant extent to reduce design costs. The purpose of the work is to build an RTL model of the SF-block for digital signal processing, its verification both at the logical and physical levels

2016 ◽  
Vol 26 (04) ◽  
pp. 1750053
Author(s):  
Burhan Khurshid ◽  
Roohie Naaz

Binary and ternary adders are frequently used to speed-up many digital signal processing (DSP) operations like multiplication, compression, filtering, convolution, etc. FPGA realization of these circuits uses a combination of look-up tables (LUTs) and carry-chains. Alternatively, inbuilt operators and parameterizable IP cores provide an efficient means of implementing these circuits. However, the realization is not optimal in the sense that the full potential of the underlying resources is not utilized. In this paper, we use technology-dependent approaches to restructure the Boolean networks corresponding to these circuits. The restructured networks are then mapped optimally onto the FPGA fabric using minimum possible resources. Our analysis shows a subsequent speed-up in the performance of these circuits when compared to different conventional and existing approaches.


Author(s):  
Gordana Jovanovic Dolecek

Digital signal processing (DSP) is an area of science and engineering that has been rapidly developed over the past years. This rapid development is a result of significant advances in digital computers technology and integrated circuits fabrication (Mitra, 2005; Smith, 2002). Classical digital signal processing structures belong to the class of single-rate systems since the sampling rates at all points of the system are the same. The process of converting a signal from a given rate to a different rate is called sampling rate conversion. Systems that employ multiple sampling rates in the processing of digital signals are called multirate digital signal processing systems. Sample rate conversion is one of the main operations in a multirate system (Harris, 2004; Stearns, 2002).


Author(s):  
E.B. Solovyeva ◽  
◽  
K.S. Ezerov ◽  
Yu.M. Inshakov ◽  
◽  
...  

A half-wave diode rectifier is represented as a nonlinear circuit to study in a laboratory course of electrical engineering. The control and measurement complex NI ELVIS effectively displays the nonlinear circuit properties using oscillograms and spectrograms of signals. The coefficients of ripples and nonlinear distortions are calculated. They help to evaluate the influence of the circuit parameters on the quality of signal conversion when rectifying and detecting. The advantages of the NI ELVIS complex consist in, for instance, the real-time digital signal processing, the visualization of results, the ergonomic visualization tools. These advantages provide clarity and precision in the presentation of complex nonlinear processes in electrical engineering.


Author(s):  
Gordana Javanovic-Dolecek

Digital signal processing (DSP) is an area of science and engineering that has been rapidly developed over the past years. This rapid development is a result of significant advances in digital computers technology and integrated circuits fabrication (Elali, 2003; Grover & Deller, 1999; Mitra, 2001; Oppenheim & Schafer, 1999; Smith, 2002; Stein, 2000; White, 2000).


Author(s):  
Witold Kinsner

Conversion of signals is fundamental to theinterfacing of embedded systems. Such signal conversionsinclude (i) analog-to digital (A/D) in order to translate ananalog form of the signal to its sampled and quantized formfor digital signal processing, (ii) digital-to-analog (D/A) inorder to translate the digital samples to a correspondingboxcar signal for further low-pass filtering and recovery ofthe original signal, and (iii) digital-to-digital (D/D) toachieve new desired properties of the data.This paper focuses on teaching the delta-sigma (ΔΣ)A/D conversion that is often omitted from an interfacingcourse because it appears to be a difficult topic tocomprehend and to teach. This new approach links the newΔΣ conversion to the other classes of A/D conversiontechniques explicitly, thus unifying and simplifying theteaching of signal conversions.


Sign in / Sign up

Export Citation Format

Share Document