scholarly journals THE RELATIONSHIP BETWEEN WNT (WINGLESS/INT) PATHWAYS REACTIVE OXYGEN SPECIES (ROS) AND CANCER

2019 ◽  
Vol 3 (2) ◽  
pp. 599
Author(s):  
Fitriannisa F. Zubaidi

Reactive oxygen species has been known to play a role in the formation of cancer and determination of cellular death. Less known, however, is its more recently studied role in regulating cellular physiologic functions. The mechanism of how ROS switches between these roles involves detailed interactions with different pathways. The Wnt pathway, specifically the canonical Wnt/β-catenin pathway, seems to be one that has this role switching effect, depending on the amount of ROS present in the cellular microenvirent. This review aims to revisit the regulation of ROS levels, their relationship to cancer, and how the Wnt pathways influence the effect of ROS.

2007 ◽  
Vol 2 ◽  
pp. 117739010700200 ◽  
Author(s):  
Tamara Zoltan ◽  
Franklin Vargas ◽  
Carla Izzo

We have determined and quantified spectrophotometrically the capacity of producing reactive oxygen species (ROS) as 1O2 during the photolysis with UV-A light of 5 new synthesized naphthyl ester derivates of well-known quinolone antibacterials (nalidixic acid (1), cinoxacin (2), norfloxacin (3), ciprofloxacin (4) and enoxacin (5)). The ability of the naphthyl ester derivatives (6-10) to generate singlet oxygen were detecting and for the first time quantified by the histidine assay, a sensitive, fast and inexpensive method. The following tendency of generation of singlet oxygen was observed: compounds 7 >10 > 6 > 8 > 9 >> parent drugs 1-5.


1989 ◽  
Vol 10 (3) ◽  
pp. 214-220 ◽  
Author(s):  
R. JOHN AITKEN ◽  
JANE S. CLARKSON ◽  
TIMOTHY B. HARGREAVE ◽  
D. STEWART IRVINE ◽  
FREDERICK C. W. WU

2021 ◽  
Vol 22 (23) ◽  
pp. 12942
Author(s):  
Chanjuan Ye ◽  
Shaoyan Zheng ◽  
Dagang Jiang ◽  
Jingqin Lu ◽  
Zongna Huang ◽  
...  

Programmed cell death (PCD) plays crucial roles in plant development and defence response. Reactive oxygen species (ROS) are produced during normal plant growth, and high ROS concentrations can change the antioxidant status of cells, leading to spontaneous cell death. In addition, ROS function as signalling molecules to improve plant stress tolerance, and they induce PCD under different conditions. This review describes the mechanisms underlying plant PCD, the key functions of mitochondria and chloroplasts in PCD, and the relationship between mitochondria and chloroplasts during PCD. Additionally, the review discusses the factors that regulate PCD. Most importantly, in this review, we summarise the sites of production of ROS and discuss the roles of ROS that not only trigger multiple signalling pathways leading to PCD but also participate in the execution of PCD, highlighting the importance of ROS in PCD.


Hypertension ◽  
2017 ◽  
Vol 70 (suppl_1) ◽  
Author(s):  
En Yin Lai ◽  
Suping Zhang ◽  
Qian Huang ◽  
Qiaoling Wang ◽  
Liang Zhao ◽  
...  

Background: Canonical Wnt signaling is involved in oxidative stress and diabetes but its role in diabetic renal microvascular dysfunction is unclear. We tested the hypothesis that enhanced canonical Wnt signaling in renal afferent arterioles from diabetic mice increases reactive oxygen species (ROS) and contractions to endothelin-1 (ET-1). Methods: Diabetic or control C57Bl/6 mice received vehicle or sulindac (40 mg·kg -1 ·day -1 ) to block canonical Wnt signaling for 4 weeks. ET-1 contractions were measured in diameter changes and H 2 O 2 and O 2 .- by fluorescence microscopy. Arteriolar protein expression and enzymatic activity were examined by standard methods. Results: Compared to control, diabetic mouse afferent arteriole had significantly increased O 2 .- (+84%) and H 2 O 2 (+91%) and enhanced sensitivity to ET-1 at 10 -8 mol·l -1 (-72±4% versus -43±4%, P<0.05) accompanied by significantly (P<0.005) reduced protein expressions and activities for catalase and superoxide dismutase 2 (SOD2). Incubation of afferent arterioles from normal or diabetic mice with PEG-SOD reduced responses to ET-1 whereas incubation with PEG-catalase reduced sensitivity to ET-1 selectively in arterioles from diabetic mice. The arteriolar protein expressions for canonical Wnt signaling indicated overactivation of this pathway in diabetic mice (2.6-fold increase in p-GSK-3β/GSK-3β and 3.3-fold decrease in p-β-catenin/β-catenin). Sulindac given to diabetic mice normalized the canonical Wnt signaling protein and arteriolar O 2 .- , H 2 O 2 and ET-1 contractions while doubling (P<0.05) microvascular catalase and SOD2. Conclusions: Increased ROS, notably H 2 O 2 , mediated by canonical Wnt signaling contributes to enhanced afferent arteriolar sensitivity to ET-1 in diabetes. Thus, antioxidant pharmacological strategies targeting canonical Wnt signaling may improve vascular function in diabetic nephropathy.


2008 ◽  
Vol 56 (7) ◽  
pp. 977-981 ◽  
Author(s):  
Ryosuke Nakahara ◽  
Tsuyoshi Fujimoto ◽  
Mitsunobu Doi ◽  
Kanako Morita ◽  
Takako Yamaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document