scholarly journals A review of Building Information Modeling research for green building design through building performance analysis

2020 ◽  
Vol 25 ◽  
pp. 1-40 ◽  
Author(s):  
Yun-Tsui Chang ◽  
Shang-Hsien Hsieh

The strength of Building Information Modeling (BIM) in achieving sustainable buildings is well recognized by the global construction industry. However, current understanding of the state-of-the-art green BIM research is still limited. In particular, a focus study on how BIM contribute to green building design through building performance analysis (BPA) is not available. This paper aims to provide systematic and comprehensive insights on current trends and future potentials of green BIM research by analyzing the existing literature with their research features (i.e. research backgrounds, goals, methods and outputs). In total, 80 publications have been collected, analyzed and discussed. The results show that among ten main BPA types, energy & thermal analysis, green building rating analysis, and cost and benefit analysis are the most studied. However, wind & ventilation analysis, acoustic analysis, and water efficiency analysis receive little attention. Moreover, more research focusing on integrated design analysis should be carried out for optimal design outcome. In addition, most of the collected literature research on the capability of data integration and analysis of green BIM tools, while their capability of visualization and documentation has limited examination. Furthermore, most researchers utilized one main software package while utilization of information exchange formats (IEF) is limited. To increase interoperability of green BIM tools, how different BIM authoring tools and IEFs can be utilized for BPA requires further investigation.

2021 ◽  
Vol 12 (2) ◽  
pp. 47-57
Author(s):  
Mizanoor Rahman ◽  
Sohana Alam Mim ◽  
Shamanta Azad Oshin

Green building design and construction is a global demand to save this earth. Leadership in Energy and Environmental Design (LEED) is the world's most widely implemented sustainable building rating system. Building Information Modeling (BIM) technology assist to keep multi-disciplinary information into a single model, and it provides an ability to perform this research. The aim is to assess the pre-certification of a proposed residential building project in integration with BIM and LEED and find out the impact of cost for a green building project. A Prototype 3D model was developed by BIM technology for the LEED certification process. A total of 704 simulations was conducted by using Green Building Studio (GBS) tools. All simulation results were calculated based on nine categories of the LEED rating system. The results of this study indicate that the lifecycle cost can be reduced significantly for a high-performance green building despite of having a high initial investment cost. Journal of Engineering Science 12(2), 2021, 47-57


2021 ◽  
Vol 2021 ◽  
pp. 1-26
Author(s):  
Ang Yang ◽  
Mingzhe Han ◽  
Qingcheng Zeng ◽  
Yuhui Sun

The construction industry is undergoing a digital revolution due to the emergence of new technologies. A significant trend is that construction projects have been transformed and upgraded to the digital and smart mode in the whole life cycle. As a critical technology for the construction industry’s innovative development, building information modeling (BIM) is widely adopted in building design, construction, and operation. BIM has gained much interest in the research field of smart buildings in recent years. However, the dimensions of BIM and smart building applications have not been explored thoroughly so far. With an in-depth review of related journal articles published from 1996 to July 2020 on the BIM applications for smart buildings, this paper provides a comprehensive understanding and critical thinking about the nexus of BIM and smart buildings. This paper proposes a framework with three dimensions for the nexus of BIM application in smart buildings, including BIM attributes, project phases, and smart attributes. According to the three dimensions, this paper elaborates on (1) the advantages of BIM for achieving various smartness; (2) applications of BIM in multiple phases of smart buildings; and (3) smart building functions that be achieved with BIM. Based on the analysis of the literature in three dimensions, this paper presents the cross-analysis of the nexus of BIM and smart buildings. Lastly, this paper proposes the critical insights and implications about the research gaps and research trends: (1) enhancing the interoperability of BIM software; (2) further exploring the role of BIM in the operation and refurbishment phase of smart buildings; (3) paying attention to BIM technology in the field of transportation infrastructure; (4) clarifying the economic benefits of BIM projects; and (5) integrating BIM and other technologies.


2016 ◽  
Vol 11 (2) ◽  
pp. 116-130 ◽  
Author(s):  
Karen Kensek ◽  
Ye Ding ◽  
Travis Longcore

Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants. This is often interpreted as creating sustainable sites, consuming less energy and water, reusing materials, and providing excellent indoor environmental quality. Environmentally friendly buildings should also consider literally the impact that they have on birds, millions of them. A major factor in bird collisions with buildings is the choice of building materials. These choices are usually made by the architect who may not be aware of the issue or may be looking for guidance from certification programs such as LEED. As a proof of concept for an educational tool, we developed a software-assisted approach to characterize whether a proposed building design would earn a point for the LEED Pilot Credit 55: Avoiding Bird Collisions. Using the visual programming language Dynamo with the common building information modeling software Revit, we automated the assessment of designs. The approach depends on parameters that incorporate assessments of bird threat for façade materials, analyzes building geometry relative to materials, and processes user input on building operation to produce the assessment.


Author(s):  
Daniel Forgues ◽  
Sheryl Staub-French ◽  
Leila M. Farah

Drastic changes are occurring in the construction industry. Building Information Modeling (BIM) processes and technologies, and new Integrated Project Delivery (IPD) approaches are transforming the way buildings are planned, designed, built and operated. With the needs for new skills to cope with these accelerating changes, architecture, engineering and construction (AEC) associations in the United States are working with universities to reengineer teaching programs, integrating architecture training within an engineering and construction curriculum. Leading universities are already developing new programs, such as BIM studio courses, and promoting new ways to teach practice knowledge within design laboratories.These changes are also starting to occur in the Canadian industry. Some large governmental bodies are starting to request that their projects are designed and built using BIM. Canadian universities must respond to these changing requirements to prepare future architects, engineers, and construction managers for these new challenges and emerging industry needs. This paper provides examples for how to bridge this gap by bringing practice knowledge and research to the classroom. First, it synthesizes the impact of BIM and IPD on engineering practices in Canada. Second, it describes curriculum development undertaken between a school of architecture and two engineering departments for the development of multidisciplinary design studios to teach integrated design and BIM. Case studies are set in urban contexts and include the development of new buildings as well as refurbishment proposals for an industrial obsolete landmark. Finally, learning from this teaching and research experience, it raises questions and issues regarding our readiness to cope with this paradigm shift.


Author(s):  
Patrick C. Suermann ◽  
Raja R.A. Issa

The publication of the National BIM Standard (NBIMS) at the end of 2007 after two years of work by the most highly diverse team ever assembled by the National Institute of Building Sciences brought a symbolic shift in the architecture, engineering, construction, and facility ownership (AECO) community. However, what impact did it have on the industry? This chapter looks at the strengths, weaknesses, opportunities, and impact of the NBIMS into 2009 and beyond. Specifically, this chapter will delve into some of the strengths of the NBIMS, such as promulgating a standardized approach for documenting information exchanges between stakeholders, and applying the NBIMS Interactive Capability Maturity Model (I-CMM) to evaluate a project or portfolio for BIM maturity. Opportunities exist in the areas of sustainability, modularity, and fabrication, as demonstrated in several industry projects to date. Weaknesses of the NBIMS are that it is not directly applicable yet at the technical level such as the National CAD Standard (NCS). Along with the NCS, the NBIMS and their umbrella parent organization, the Facility Information Council of the National Institute of Building Sciences are gradually being absorbed into the buildingSMART™ Alliance. Lastly, the primary impact of the NBIMS will be felt in terms of current and future projects promoting interoperable information exchange for specific stakeholders. These include multiple applications of interoperable-IFC-based approaches.


2020 ◽  
Vol 12 (23) ◽  
pp. 9988
Author(s):  
Quan Wen ◽  
Zhongfu Li ◽  
Yifeng Peng ◽  
Baorong Guo

Building information modeling (BIM) is an emerging technique in the construction industry. It is regarded as an effective approach for green building development; however, its effectiveness has not been sufficiently investigated from a lifecycle perspective. To bridge this research gap, this study investigates BIM application value in different phases of a green building through a convolutional neural network (CNN) method. To begin with, an assessment framework was developed with the consideration of balancing the estimation accuracy and the data size. Then, the validity of the developed model was verified from both theoretical and practical perspectives. Finally, the effectiveness of BIM was tested using the proposed framework. Results showed that the overall score of the tested project was four in the five-point Likert scale, with an average relative error less than 1%. From a value-based perspective, it is revealed that the application value of BIM represented a descending order throughout the lifecycle of the tested project. In addition, it is found that the functional value obtained the highest score, whereas social value was at the bottom. The findings of this study can help decision makers to detect the weaknesses of BIM implementation during green building development.


2014 ◽  
Vol 496-500 ◽  
pp. 2523-2528
Author(s):  
Ying Ming Su ◽  
Chung Yi Lan

With inappropriate design or construction, the functions and service life of buildings begin to decline from the day of official use until they are demolished and resulting in extremely high cumulative cost throughout the building life cycle (BLC). However, the development of building information modeling (BIM) provides a solution for short BLCs and massive cumulative cost caused by errors occurring during the building design and construction phases. BIM is an innovative technique applicable to building design and construction management that has been vigorously developed in the construction industry. The development of BIM technology is now a global trend that can not be ignored, similar to 2D CAD before. BIM can be further developed into several aspects and applied during the construction phase, most important of all, enhance the overall building functionality and save operating cost throughout the BLC.


2014 ◽  
Vol 1073-1076 ◽  
pp. 1271-1274
Author(s):  
Yun Hui Yang

Green building is rapidly transforming the design and construction industry around the globe. Simultaneously, a growing numbers of industry practitioners are taking the advantages of building information modeling (BIM) to upgrade the sustainable performance of green building. BIM tools encourage an integrated lifecycle green building management from design, construction, and prefabrication to operation and maintenance. This paper represents using BIM technology to achieve green building objectives and sustainable performances.


Sign in / Sign up

Export Citation Format

Share Document