GREEN BUILDING AND BIODIVERSITY: FACILITATING BIRD FRIENDLY DESIGN WITH BUILDING INFORMATION MODELS

2016 ◽  
Vol 11 (2) ◽  
pp. 116-130 ◽  
Author(s):  
Karen Kensek ◽  
Ye Ding ◽  
Travis Longcore

Green buildings should respect nature and endeavor to mitigate harmful effects to the environment and occupants. This is often interpreted as creating sustainable sites, consuming less energy and water, reusing materials, and providing excellent indoor environmental quality. Environmentally friendly buildings should also consider literally the impact that they have on birds, millions of them. A major factor in bird collisions with buildings is the choice of building materials. These choices are usually made by the architect who may not be aware of the issue or may be looking for guidance from certification programs such as LEED. As a proof of concept for an educational tool, we developed a software-assisted approach to characterize whether a proposed building design would earn a point for the LEED Pilot Credit 55: Avoiding Bird Collisions. Using the visual programming language Dynamo with the common building information modeling software Revit, we automated the assessment of designs. The approach depends on parameters that incorporate assessments of bird threat for façade materials, analyzes building geometry relative to materials, and processes user input on building operation to produce the assessment.

2021 ◽  
Vol 12 (2) ◽  
pp. 47-57
Author(s):  
Mizanoor Rahman ◽  
Sohana Alam Mim ◽  
Shamanta Azad Oshin

Green building design and construction is a global demand to save this earth. Leadership in Energy and Environmental Design (LEED) is the world's most widely implemented sustainable building rating system. Building Information Modeling (BIM) technology assist to keep multi-disciplinary information into a single model, and it provides an ability to perform this research. The aim is to assess the pre-certification of a proposed residential building project in integration with BIM and LEED and find out the impact of cost for a green building project. A Prototype 3D model was developed by BIM technology for the LEED certification process. A total of 704 simulations was conducted by using Green Building Studio (GBS) tools. All simulation results were calculated based on nine categories of the LEED rating system. The results of this study indicate that the lifecycle cost can be reduced significantly for a high-performance green building despite of having a high initial investment cost. Journal of Engineering Science 12(2), 2021, 47-57


Author(s):  
Daniel Forgues ◽  
Sheryl Staub-French ◽  
Leila M. Farah

Drastic changes are occurring in the construction industry. Building Information Modeling (BIM) processes and technologies, and new Integrated Project Delivery (IPD) approaches are transforming the way buildings are planned, designed, built and operated. With the needs for new skills to cope with these accelerating changes, architecture, engineering and construction (AEC) associations in the United States are working with universities to reengineer teaching programs, integrating architecture training within an engineering and construction curriculum. Leading universities are already developing new programs, such as BIM studio courses, and promoting new ways to teach practice knowledge within design laboratories.These changes are also starting to occur in the Canadian industry. Some large governmental bodies are starting to request that their projects are designed and built using BIM. Canadian universities must respond to these changing requirements to prepare future architects, engineers, and construction managers for these new challenges and emerging industry needs. This paper provides examples for how to bridge this gap by bringing practice knowledge and research to the classroom. First, it synthesizes the impact of BIM and IPD on engineering practices in Canada. Second, it describes curriculum development undertaken between a school of architecture and two engineering departments for the development of multidisciplinary design studios to teach integrated design and BIM. Case studies are set in urban contexts and include the development of new buildings as well as refurbishment proposals for an industrial obsolete landmark. Finally, learning from this teaching and research experience, it raises questions and issues regarding our readiness to cope with this paradigm shift.


2012 ◽  
Vol 1 (4) ◽  
pp. 50-68 ◽  
Author(s):  
David E. Morton

Building Information Modeling (BIM) has made a considerable impact on the construction industry and the way in which building design information can be accessed and interrogated. This impact is now being seen in the Schools of Architecture in the UK. Academia is beginning to see the feasibility and benefits of converting to such a new technology; will this inevitably start to filter into teaching BIM to architecture students? The concern by many in academia is that design will become secondary to pedagogy of building design. This viewpoint is based on the impact of CAD, where the art of hand drawing was feared lost forever. The use of computers in schools of architecture has become the norm, and the creative moving of a pen across paper has been replaced, to a degree, by the cursor across the CAD screen. As academia moved to respond to this change, the need to teach CAD became increasingly important. Therefore, will the paradigm shift of BIM require the inevitable move to a new approach in the design and construction of buildings? There are many misconceptions of BIM and the dilemma is that those teaching within the schools need to understand how BIM can readily interface with the design process and allow interrogation of the design are far earlier stages of the concept. Will academia ensure that BIM is used to enhance the creative process not hinder it?


2018 ◽  
Vol 15 (1) ◽  
pp. 35-43
Author(s):  
Claudio Alcides Jacoski ◽  
Lissandro Machado Hoffmeister

This study proposes an artifact motivated by improved assertiveness in building design budgets. Building Information Modeling (BIM), with the structure of the parametric objects created in a file format with the Industry Foundation Classes (IFC) extension, can provide the data for the object, facilitating the design's control and monitoring process. Through the adoption of the IFC standard in the creation of these objects, the exchange of information between the tools of different software providers becomes viable, allowing interoperability between systems. This is a desired situation in the construction industry, which incurs significant losses due to this problem. An important condition that can significantly contribute to the update of the information of the objects and the budget process is the incorporation of the possibility of updating the value information (price) of the BIM objects that are shared in repositories (object libraries). In this context, this study presents an alternative to updating and retrieving the values of BIM objects based on the IFC standard. An artifact (web environment) was produced linked to a model to meet the proposed objective. This method is presented by computing services, enabling the automated retrieval of the object value between the owners, the price repository and also the designers. The performed tests reveal the practicality of its implementation, with no extensive knowledge of the IFC structure being necessary. It suffices to simply follow the fill out pattern of the custom properties in IFC, defined during the creation of the object. The submission of the construction design to the repository allows for the retrieval of the values and the quantification of objects present in the design. This process is carried out in a simple manner, maintaining the synchrony and traceability of the object with the designer and the owners of the objects making up the architectural and complementary design.


2020 ◽  
Vol 25 ◽  
pp. 1-40 ◽  
Author(s):  
Yun-Tsui Chang ◽  
Shang-Hsien Hsieh

The strength of Building Information Modeling (BIM) in achieving sustainable buildings is well recognized by the global construction industry. However, current understanding of the state-of-the-art green BIM research is still limited. In particular, a focus study on how BIM contribute to green building design through building performance analysis (BPA) is not available. This paper aims to provide systematic and comprehensive insights on current trends and future potentials of green BIM research by analyzing the existing literature with their research features (i.e. research backgrounds, goals, methods and outputs). In total, 80 publications have been collected, analyzed and discussed. The results show that among ten main BPA types, energy & thermal analysis, green building rating analysis, and cost and benefit analysis are the most studied. However, wind & ventilation analysis, acoustic analysis, and water efficiency analysis receive little attention. Moreover, more research focusing on integrated design analysis should be carried out for optimal design outcome. In addition, most of the collected literature research on the capability of data integration and analysis of green BIM tools, while their capability of visualization and documentation has limited examination. Furthermore, most researchers utilized one main software package while utilization of information exchange formats (IEF) is limited. To increase interoperability of green BIM tools, how different BIM authoring tools and IEFs can be utilized for BPA requires further investigation.


Author(s):  
Taki Eddine Seghier ◽  
Yaik Wah Lim ◽  
Mohd Hamdan Ahmad ◽  
Williams Opeyemi Samuel

Accomplishment of green building design requirements and the achievement of the targeted credit points under a specific green rating system are known to be a task that is very challenging. Building Information Modeling (BIM) design process and tools have already made considerable advancements in green building design and performance analysis. However, Green building design process is still lack of tools and workflows that can provide real-time feedback of building sustainability and rating during the design stage. In this paper, a new workflow of green building design assessment and rating is proposed based on the integration of Visual Programing Language (VPL) and BIM. Thus, the aim of this study is to develop a BIM-VPL based tool for building envelope design and assessment support. The focus performance metric in this research is building Envelope Thermal Transfer Value (ETTV) which is an Energy Efficiency (EE) prerequisite requirement (up to 15 credits) in both Green Mark and GreenRE rating systems. The development of the tool begins first by creating a generic integration framework between BIM-VPL functionalities and ETTV requirements. Then, data is extracted from the BIM 3D model and managed using Revit, Excel and Dynamo for visual scripting. A sample project consisting of a hypothetical residential building is run and its envelope ETTV performance and rating score are obtained for the validation of the tool. This tool will support project team in building envelope design and assessment by allowing them to select the most appropriate façade configuration according to its performance efficiency and the green rating. Furthermore, this tool serves as proof of concept that building sustainability rating and compliance checking can be automatically processed through customized workflows developed based on BIM and VPL technologies.


Author(s):  
D. P. Kothari

The green building design aims to minimize the need for the non-renewable energy of these resources, optimize their sustainability and maximize their conservation, recycling and usage. The use of effective building materials and construction techniques is maximized. Architectural bioclimatic technology will also optimize on-site usage of sources and sinks. It requires only minimum electricity to fuel itself and efficient appliances to meet its lighting, air-conditioning and other needs. Green buildings architecture optimizes the use of renewable energies and efficient waste and water management methods to create practical and hygienic working conditions for indoor environments. Materials such as chemical, physical and mechanical material properties and an appropriate specification are the fundamental elements of construction design and responsible for the mechanical strength of the design. The construction of green buildings is also the first step in choosing and utilizing eco-friendly materials with or better characteristics than traditional building materials. Based on the practical, technical and financial requirements, construction materials are usually selected. But, given that sustainable development has been a core issue in recent decades, building industry that is directly or indirectly responsible for a substantial share of annual environmental destruction, by pursuing environmentally sound constructions and buildings should take responsibility for contributing to sustainable growth. The quickest way for manufacturers to start integrating environmental design practices into buildings would be the diligent procurement of eco-friendly sustainable construction materials, including options for new material uses, recycling and reusing, organic product creation and green resource use. This paper aims to show how green building materials will help reduce the impact on the atmosphere and create a cleaner building that can be healthy for the occupant or our environment. In the sustainable progress of a nation, the choice of building materials that have reduced environmental burdens is helpful.


2013 ◽  
Vol 7 (1) ◽  
pp. 138-145 ◽  
Author(s):  
Constantinos A. Balaras ◽  
Simon Kontoyiannidis ◽  
Elena G. Dascalaki ◽  
Kaliopi G. Droutsa

Building Information Modeling (BIM) for optimizing the total lifecycle cost of buildings is a challenge even today. Inadequate software interoperability, high costs as a result of the fragmented nature of the building industry, lack of standardization, inconsistent technology adoption among stakeholders are just some of the obstacles that architects and engineers face. However, optimization requires a structured procedure that enables continuous changes in design variables and assessment on energy consumption. A holistic building design and construction are already introduced in Europe through the energy performance of buildings directive (EPBD). The requirements have been strengthened by the EPBD recast for achieving cost optimal building designs for the life cycle of the building, moving towards nearly zero energy buildings by the end of the decade. BIM and intelligent services could play a crucial role in these efforts with improved visualization and productivity due to easy retrieval of information, increased coordination of data and exchange of information, all leading to a reduced cost for the design of energy efficient buildings. An ongoing European research project aims to contribute to these needs by developing a Virtual Energy Laboratory that will support building energy performance simulations taking into account the stochastic nature of input parameters and processes. This will be supported by information communication technology features utilizing the necessary computational power through cloud computing. This paper presents an overview of the ongoing efforts and focuses on results for assessing the impact of different input weather and climate data that are pertinent in building load and energy performance calculations.


2021 ◽  
Author(s):  
Xi (Stacy) Sun

Traditional energy modeling methods are usually time-consuming and labour-intensive, so energy simulation is rarely performed early in building design. If a Building Energy Model (BEM) can be seamlessly generated from a Building Information Modeling (BIM) model, the energy simulation process can be much more efficient and better integrated in design. The concerns about BIM to BEM data transfer integrity and the reliability of simulation results are preventing wider adoption of BIM-based energy simulation. This study aimed to address these two obstacles and increase energy modelers’ confidence in using BIM for energy analysis. Green Building Studio (GBS) was used to simulate energy use and generate eQuest and EnergyPlus input files. Two building types were modeled in Revit with various iterations and BEM input files downloaded from GBS were compared line by line to identify and classify discrepancies. Simulation results from BIM-based and traditional modeling were compared to test reliability and showed unexpectedly good agreement across methods.


Sign in / Sign up

Export Citation Format

Share Document