scholarly journals The Beta Weibull-G Family of Distributions: Model, Properties and Application

2018 ◽  
Vol 7 (2) ◽  
pp. 12 ◽  
Author(s):  
Boikanyo Makubate ◽  
Broderick O. Oluyede ◽  
Gofaone Motobetso ◽  
Shujiao Huang ◽  
Adeniyi F. Fagbamigbe

A new family of generalized distributions called the beta Weibull-G (BWG) distribution is proposed and developed. This new class of distributions has several new and well known distributions including exponentiated-G, Weibull-G, Rayleigh-G, exponential-G, beta exponential-G, beta Rayleigh-G, beta Rayleigh exponential, beta-exponential-exponential, Weibull-log-logistic distributions, as well as several other distributions such as beta Weibull-Uniform, beta Rayleigh-Uniform, beta exponential-Uniform, beta Weibull-log logistic and beta Weibull-exponential distributions as special cases. Series expansion of the density function, hazard function, moments, mean deviations, Lorenz and Bonferroni curves, R\'enyi entropy, distribution of order statistics and maximum likelihood estimates of the model parameters are given. Application of the model to real data set is presented to illustrate the importance and usefulness of the special case beta Weibull-log-logistic distribution.

2019 ◽  
Vol 8 (6) ◽  
pp. 1
Author(s):  
Fastel Chipepa ◽  
Broderick O. Oluyede ◽  
Boikanyo Makubate

A new family of distributions, namely the Kumaraswamy Odd Lindley-G distribution is developed. The new density function can be expressed as a linear combination of exponentiated-G densities. Statistical properties of the new family including hazard rate and quantile functions, moments and incomplete moments, Bonferroni and Lorenz curves, distribution of order statistics and R´enyi entropy are derived. Some special cases are presented. We conduct some Monte Carlo simulations to examine the consistency of the maximum likelihood estimates. We provide an application of KOL-LLo distribution to a real data set.


2017 ◽  
Vol 46 (1) ◽  
pp. 65-87 ◽  
Author(s):  
Frank S. Gomes-Silva ◽  
Ana Percontini ◽  
Edleide de Brito ◽  
Manoel W. Ramos ◽  
Ronaldo Venâncio ◽  
...  

We propose a new generator of continuous distributions with one extra positive parameter called the odd Lindley-G family. Some special cases are presented. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. Various structural properties of the new family, which hold for any baseline model, are derived including explicit expressions for the quantile function, ordinary and incomplete moments, generating function, Renyi entropy, reliability, order statistics and their moments and k upper record values. We discuss estimation of the model parameters by maximum likelihood and provide an application to a real data set.


2019 ◽  
Vol 15 (1) ◽  
pp. 1-24 ◽  
Author(s):  
Hesham Mohamed Reyad ◽  
Morad Alizadeh ◽  
Farrukh Jamal ◽  
Soha Othman ◽  
G G Hamedani

In this paper, we propose a new class of continuous distributions called the exponentiated generalized Topp Leone-G family that extends the Topp Leone-G family introduced by Al-Shomrani et al. (2016). We derive explicit expressions for certain mathematical properties of the new family such as; ordinary and incomplete moments, generating functions, reliability analysis, Lorenz and Bonferroni curves, Rényi entropy, stress strength model, moment of residual and reversed residual life, order statistics and extreme values. We discuss the maximum likelihood estimates and the observed information matrix for the model parameters. Two real data sets are used to illustrate the flexibility of the new family.


Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 908
Author(s):  
Perla Celis ◽  
Rolando de la Cruz ◽  
Claudio Fuentes ◽  
Héctor W. Gómez

We introduce a new class of distributions called the epsilon–positive family, which can be viewed as generalization of the distributions with positive support. The construction of the epsilon–positive family is motivated by the ideas behind the generation of skew distributions using symmetric kernels. This new class of distributions has as special cases the exponential, Weibull, log–normal, log–logistic and gamma distributions, and it provides an alternative for analyzing reliability and survival data. An interesting feature of the epsilon–positive family is that it can viewed as a finite scale mixture of positive distributions, facilitating the derivation and implementation of EM–type algorithms to obtain maximum likelihood estimates (MLE) with (un)censored data. We illustrate the flexibility of this family to analyze censored and uncensored data using two real examples. One of them was previously discussed in the literature; the second one consists of a new application to model recidivism data of a group of inmates released from the Chilean prisons during 2007. The results show that this new family of distributions has a better performance fitting the data than some common alternatives such as the exponential distribution.


2021 ◽  
Vol 71 (6) ◽  
pp. 1581-1598
Author(s):  
Vahid Nekoukhou ◽  
Ashkan Khalifeh ◽  
Hamid Bidram

Abstract The main aim of this paper is to introduce a new class of continuous generalized exponential distributions, both for the univariate and bivariate cases. This new class of distributions contains some newly developed distributions as special cases, such as the univariate and also bivariate geometric generalized exponential distribution and the exponential-discrete generalized exponential distribution. Several properties of the proposed univariate and bivariate distributions, and their physical interpretations, are investigated. The univariate distribution has four parameters, whereas the bivariate distribution has five parameters. We propose to use an EM algorithm to estimate the unknown parameters. According to extensive simulation studies, we see that the effectiveness of the proposed algorithm, and the performance is quite satisfactory. A bivariate data set is analyzed and it is observed that the proposed models and the EM algorithm work quite well in practice.


Author(s):  
Zubair Ahmad Ahmad ◽  
Eisa Mahmoudi Mahmoudi ◽  
G. G. Hamedani

Actuaries are often in search of nding an adequate loss model in the scenario of actuarial and financial risk management problems. In this work, we propose a new approach to obtain a new class of loss distributions. A special sub-model of the proposed family, called the Weibull-loss model isconsidered in detail. Some mathematical properties are derived and maximum likelihood estimates of the model parameters are obtained. Certain characterizations of the proposed family are also provided. A simulation study is done to evaluate the performance of the maximum likelihood estimators. Finally, an application of the proposed model to the vehicle insurance loss data set is presented.


2020 ◽  
Vol 17 (11) ◽  
pp. 4813-4818
Author(s):  
Sanaa Al-Marzouki ◽  
Sharifah Alrajhi

We proposed a new family of distributions from a half logistic model called the generalized odd half logistic family. We expressed its density function as a linear combination of exponentiated densities. We calculate some statistical properties as the moments, probability weighted moment, quantile and order statistics. Two new special models are mentioned. We study the estimation of the parameters for the odd generalized half logistic exponential and the odd generalized half logistic Rayleigh models by using maximum likelihood method. One real data set is assesed to illustrate the usefulness of the subject family.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Suleman Nasiru

The need to develop generalizations of existing statistical distributions to make them more flexible in modeling real data sets is vital in parametric statistical modeling and inference. Thus, this study develops a new class of distributions called the extended odd Fréchet family of distributions for modifying existing standard distributions. Two special models named the extended odd Fréchet Nadarajah-Haghighi and extended odd Fréchet Weibull distributions are proposed using the developed family. The densities and the hazard rate functions of the two special distributions exhibit different kinds of monotonic and nonmonotonic shapes. The maximum likelihood method is used to develop estimators for the parameters of the new class of distributions. The application of the special distributions is illustrated by means of a real data set. The results revealed that the special distributions developed from the new family can provide reasonable parametric fit to the given data set compared to other existing distributions.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1786 ◽  
Author(s):  
A. M. Abd El-Raheem ◽  
M. H. Abu-Moussa ◽  
Marwa M. Mohie El-Din ◽  
E. H. Hafez

In this article, a progressive-stress accelerated life test (ALT) that is based on progressive type-II censoring is studied. The cumulative exposure model is used when the lifetime of test units follows Pareto-IV distribution. Different estimates as the maximum likelihood estimates (MLEs) and Bayes estimates (BEs) for the model parameters are discussed. Bayesian estimates are derived while using the Tierney and Kadane (TK) approximation method and the importance sampling method. The asymptotic and bootstrap confidence intervals (CIs) of the parameters are constructed. A real data set is analyzed in order to clarify the methods proposed through this paper. Two types of the progressive-stress tests, the simple ramp-stress test and multiple ramp-stress test, are compared through the simulation study. Finally, some interesting conclusions are drawn.


Author(s):  
Arun Kumar Chaudhary ◽  
Vijay Kumar

In this study, we have introduced a three-parameter probabilistic model established from type I half logistic-Generating family called half logistic modified exponential distribution. The mathematical and statistical properties of this distribution are also explored. The behavior of probability density, hazard rate, and quantile functions are investigated. The model parameters are estimated using the three well known estimation methods namely maximum likelihood estimation (MLE), least-square estimation (LSE) and Cramer-Von-Mises estimation (CVME) methods. Further, we have taken a real data set and verified that the presented model is quite useful and more flexible for dealing with a real data set. KEYWORDS— Half-logistic distribution, Estimation, CVME ,LSE, , MLE


Sign in / Sign up

Export Citation Format

Share Document