scholarly journals VACCINE DEVELOPMENT- A COMPLEX SCIENCE

Author(s):  
Afifa Ansari ◽  
Ayush Madan ◽  
Divya Prakash

Several human vaccinations were created at the end of the nineteenth century, Smallpox, rabies, plague, cholera, and typhoid vaccinations are among them. Major things to acknowledge before vaccine preparation is that we have to isolate the antibody firstly which our body has produced against the pathogen and what is the composition of that antibody and also the structure of an antibody. A vaccine is administered to induce immunity in an individual’s body. Typically, the manufacture of vaccine uses viral or bacterial antigen in it. It may be killed or attenuated vaccine (live but less virulent). The foremost step to produce a vaccine is to select the strains for the vaccine and to culture the strain or microorganism. These two steps are collectively known as the upstream process. This is further followed by isolation and purification of the microorganism and then after the inactivation of the organism which is used for vaccine preparation formulation of vaccine begins. The last step is to check quality control and then further lot release; all of these steps are included in downstream processing. Mostly used vaccines lack efficiency, potency and safety. To take the vaccine preparation to next level, the introduction of monoclonal antibodies, recombinant DNA, and protein engineering have been accelerated knowledge of pathogenic mechanisms. This review provides a new approach to the development of the succeeding generation of vaccines.


Author(s):  
F. A. Durum ◽  
R. G. Goldman ◽  
T. J. Bolling ◽  
M. F. Miller

CMP-KDO synthetase (CKS) is an enzyme which plays a key role in the synthesis of LPS, an outer membrane component unique to gram negative bacteria. CKS activates KDO to CMP-KDO for incorporation into LPS. The enzyme is normally present in low concentrations (0.02% of total cell protein) which makes it difficult to perform large scale isolation and purification. Recently, the gene for CKS from E. coli was cloned and various recombinant DNA constructs overproducing CKS several thousandfold (unpublished data) were derived. Interestingly, no cytoplasmic inclusions of overproduced CKS were observed by EM (Fig. 1) which is in contrast to other reports of large proteinaceous inclusion bodies in various overproducing recombinant strains. The present immunocytochemical study was undertaken to localize CKS in these cells.Immune labeling conditions were first optimized using a previously described cell-free test system. Briefly, this involves soaking small blocks of polymerized bovine serum albumin in purified CKS antigen and subjecting them to various fixation, embedding and immunochemical conditions.



2021 ◽  
Author(s):  
Simon Kluters ◽  
Karin Steinhauser ◽  
Roland Pfänder ◽  
Joey Studts


Vaccines ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 302 ◽  
Author(s):  
Anthony C. Ike ◽  
Chisom J. Onu ◽  
Chukwuebuka M. Ononugbo ◽  
Eleazar E. Reward ◽  
Sophia O. Muo

Herpes simplex virus (HSV) infections are among the most common viral infections and usually last for a lifetime. The virus can potentially be controlled with vaccines since humans are the only known host. However, despite the development and trial of many vaccines, this has not yet been possible. This is normally attributed to the high latency potential of the virus. Numerous immune cells, particularly the natural killer cells and interferon gamma and pathways that are used by the body to fight HSV infections have been identified. On the other hand, the virus has developed different mechanisms, including using different microRNAs to inhibit apoptosis and autophagy to avoid clearance and aid latency induction. Both traditional and new methods of vaccine development, including the use of live attenuated vaccines, replication incompetent vaccines, subunit vaccines and recombinant DNA vaccines are now being employed to develop an effective vaccine against the virus. We conclude that this review has contributed to a better understanding of the interplay between the immune system and the virus, which is necessary for the development of an effective vaccine against HSV.



2021 ◽  
Vol 13 (11) ◽  
pp. 2069
Author(s):  
M. V. Alba-Fernández ◽  
F. J. Ariza-López ◽  
M. D. Jiménez-Gamero

The usefulness of the parameters (e.g., slope, aspect) derived from a Digital Elevation Model (DEM) is limited by its accuracy. In this paper, a thematic-like quality control (class-based) of aspect and slope classes is proposed. A product can be compared against a reference dataset, which provides the quality requirements to be achieved, by comparing the product proportions of each class with those of the reference set. If a distance between the product proportions and the reference proportions is smaller than a small enough positive tolerance, which is fixed by the user, it will be considered that the degree of similarity between the product and the reference set is acceptable, and hence that its quality meets the requirements. A formal statistical procedure, based on a hypothesis test, is developed and its performance is analyzed using simulated data. It uses the Hellinger distance between the proportions. The application to the slope and aspect is illustrated using data derived from a 2×2 m DEM (reference) and 5×5 m DEM in Allo (province of Navarra, Spain).



2017 ◽  
pp. 305-361 ◽  
Author(s):  
Anne-Lise Marie ◽  
Grégory Rouby ◽  
Emmanuel Jaccoulet ◽  
Claire Smadja ◽  
Nguyet Thuy Tran ◽  
...  


Minerals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1253
Author(s):  
Uwe König ◽  
Sabine M. C. Verryn

Heavy mineral sands are the source of various commodities such as white titanium dioxide pigment and titanium metal. The three case studies in this paper show the value of X-ray diffraction (XRD) and statistical methods such as data clustering for process optimization and quality control during heavy mineral processing. The potential of XRD as an automatable, reliable tool, useful in the characterization of heavy mineral concentrates, product streams and titania slag is demonstrated. The recent development of ultra-high-speed X-ray detectors and automated quantification allows for ‘on the fly’ quantitative X-ray diffraction analysis and truly interactive process control, especially in the sector of heavy mineral concentration and processing. Apart from the information about the composition of a raw ore, heavy mineral concentrate and the various product streams or titania slag, this paper provides useful information by the quantitative determination of the crystalline phases and the amorphous content. The analysis of the phases can help to optimize the concentration of ores and reduction of ilmenite concentrate. Traditionally, quality control of heavy mineral concentrates and titania slag relies mainly on elemental, chemical, gravimetrical, and magnetic analysis. Since the efficiency of concentration of minerals in the different product streams and reduction depends on the content of the different minerals, and for the latter on the titanium and iron phases such as ilmenite FeTiO3, rutile TiO2, anatase TiO2, or the various titanium oxides with different oxidation stages, fast and direct analysis of the phases is required.



2018 ◽  
Vol 8 (5) ◽  
pp. 3360-3365 ◽  
Author(s):  
N. Pekin Alakoc ◽  
A. Apaydin

The purpose of this study is to present a new approach for fuzzy control charts. The procedure is based on the fundamentals of Shewhart control charts and the fuzzy theory. The proposed approach is developed in such a way that the approach can be applied in a wide variety of processes. The main characteristics of the proposed approach are: The type of the fuzzy control charts are not restricted for variables or attributes, and the approach can be easily modified for different processes and types of fuzzy numbers with the evaluation or judgment of decision maker(s). With the aim of presenting the approach procedure in details, the approach is designed for fuzzy c quality control chart and an example of the chart is explained. Moreover, the performance of the fuzzy c chart is investigated and compared with the Shewhart c chart. The results of simulations show that the proposed approach has better performance and can detect the process shifts efficiently.



Sign in / Sign up

Export Citation Format

Share Document