MODELING REDISTRIBUTION CEREBRAL CIRCULATION

2021 ◽  
Vol 1 (4) ◽  
pp. 13-18
Author(s):  
Vladislav Nikolaevich Nikitin ◽  
◽  
Ekaterina Valerevna Kozhemyakina ◽  

The brain is one of the most important organs responsible for the health and functioning of the entire body. The blood supply to the brain is carried out through 2 internal carotid and 2 vertebral arteries in norm. The brain, like other body systems, has protective (compensatory) mechanisms aimed at maintaining the necessary blood flow, one of which is the circle of Willis. The article proposes a mechanism for how blood flow is redistributed through the arteries feeding the brain, which is based on the assumption that the central nervous system controls in such a way that it minimizes flows through the connective arteries of the circle of Willis, the flows along which are normal (with symmetry of the left and right sides) practically equal to zero. Сase of the structure of the circle of Willis is considered in norm. The indicated redistribution mechanism is still only the first step towards an attempt to predict cases of changes in blood flow through the cerebral arteries, especially in stroke. In further works, it is planned to consider the inverse problem, i.e. determine the flows through the internal carotid and vertebral arteries, provided that the flows through the cerebral arteries extending from the circle of Willis have normal flow values.

Author(s):  
M. Harazawa ◽  
T. Yamaguchi

The blood supply for the brain is born by four arteries, that is, two internal carotid arteries and two vertebral arteries. They are mutually connected at the cerebral base, and form a closed arterial circle, called the circle of Willis, so that the safety of the brain blood supply is increased. However their anastomoses show a very wide variety of atypism. If some of anastomses are very thin, or even do not exist, the safety of the blood supply is not secured. This is particularly important when some diseases such as cerebral thrombosis occurs and the blood flow supply stops unilaterally. Redistribution of the blood supply in such cases is thought to be strongly affected by geometrical configuration of the anastomoses. It is also known that cerebral aneurysms, which may induce serious cerebrovascular diseases, preferentially occur at the circle of Willis. Complex blood flow pattern has been suspected of having an influence on this preference. This is again dependent on complex geometry of the circle.


Author(s):  
Paul Fahy ◽  
Patrick Delassus ◽  
Padraig O’Flynn ◽  
Liam Morris

The circle of Willis (CoW) is a complex arterial network comprising of major cerebral arteries that converge to form a pentagonal arrangement as shown in Figure 1(A). This arterial network supplies oxygen-enriched blood to the brain. An incomplete CoW can exist in up to 50% of cases [1]. These missing vessels can be accommodated by the collateral flow feature within the CoW configuration. In certain circumstances, anatomical variations within the CoW can result in undesirable flow patterns [2–3]. It is unclear from the literature what effects these variations can have on blood flow collision paths within a complete CoW.


2020 ◽  
Vol 40 (4) ◽  
pp. 315-323
Author(s):  
Dayane Kelly Sabec-Pereira ◽  
Fabiano C. Lima ◽  
Fabiano R. Melo ◽  
Fabiana Cristina S.A. Melo ◽  
Kleber Fernando Pereira ◽  
...  

ABSTRACT: We studied the arterial circle in the brain of five specimens of the Alouatta belzebul primate. The material had the arterial system perfused (water at 40°C), injected with stained latex (Neoprene 650), fixed in aqueous formaldehyde solution (10%) and dissected for vessel verification. The arterial circle of this primate is composed of two vascular systems: the vertebra-basilar and the carotid ones, which anastomose to close the arterial circuit. In the caudal portion of the arterial circle, there are the vertebral arteries and their branches: the rostral spinal artery and the caudal inferior cerebellar artery. The anastomosis of the vertebral arteries gives rise to the basilar artery. It presented an anatomical variation at the beginning of its path, forming a double basilar artery, called arterial island. In its course, it emitted branches giving rise to the rostral inferior cerebellar artery, the pontine arteries, the rostral cerebellar arteries, the satellite rostral cerebellar arteries and its terminal branch, the caudal cerebral artery, which presented itself in two segments: the pre-communicating one and post-communicating, joining the internal carotid artery and originating the caudal communicating artery. This group of arteries and anastomoses enclose the caudal portion of the arterial circle. From the right and left internal carotid arteries begins the rostral portion of the arterial circle, which consists of the right and left rostral cerebral arteries and the right and left middle cerebral arteries. The rostral cerebral arteries anastomose into a single trunk, giving rise to the interhemispheric artery, and in A. belzebul and Sapajus libidinosus, the rostral communicating artery is absent. The interhemispheric artery goes to the midbrain region and the corpus callosum knee divides into pericalous artery and callosarginal artery, which will supply the pre and post-central regions of the cerebral hemispheres of this species, as well as other non-human and human primates. It is noted that in the first part of the left rostral cerebral artery, there is a direct inosculation between the recurrent branch of the rostral cerebral artery and left middle cerebral artery to supply the entorhinal region. This fact also occurs in Pongo spp. The middle cerebral artery travels along the lateral sulcus where it emits several superficial branches to irrigate the superior and inferior lateral cortical regions of the frontal, parietal and temporal lobes. It is not part of the arterial circle but is the terminal branch of the internal carotid artery. A. belzebul can be considered to depend on two sources of supply to the brain: the vertebra-basilar and carotid systems, contributing to the intervention of veterinarians during clinical and surgical procedures in other primates, as well as the preservation of wild animals.


2017 ◽  
Author(s):  
Debanjan Mukherjee ◽  
Neel D. Jani ◽  
Jared Narvid ◽  
Shawn C. Shadden

AbstractWe describe a patient-specific simulation based investigation on the role of Circle of Willis anatomy in cardioembolic stroke. Our simulation framework consists of medical image-driven modeling of patient anatomy including the Circle, 3D blood flow simulation through patient vasculature, embolus transport modeling using a discrete particle dynamics technique, and a sampling based approach to incorporate parametric variations. A total of 24 (four patients and six Circle anatomies including the complete Circle) models were considered, with cardiogenic emboli of varying sizes and compositions released virtually and tracked to compute distribution to the brain. The results establish that Circle anatomical variations significantly influence embolus distribution to the six major cerebral arteries. Embolus distribution to MCA territory is found to be least sensitive to the influence of anatomical variations. For varying Circle topologies, differences in flow through cervical vasculature are observed. This incoming flow is recruited differently across the communicating arteries of the Circle for varying anastomoses. Emboli interact with the routed flow, and can undergo significant traversal across the Circle arterial segments, depending upon their inertia and density ratio with respect to blood. This interaction drives the underlying biomechanics of embolus transport across the Circle, explaining how Circle anatomy influences embolism risk.


2013 ◽  
Vol 136 (1) ◽  
Author(s):  
Paul Fahy ◽  
Patrick Delassus ◽  
Peter McCarthy ◽  
Sheriff Sultan ◽  
Niamh Hynes ◽  
...  

The Circle of Willis (CoW) is a complex pentagonal network comprised of fourteen cerebral vessels located at the base of the brain. The collateral flow feature within the circle of Willis allows the ability to maintain cerebral perfusion of the brain. Unfortunately, this collateral flow feature can create undesirable flow impact locations due to anatomical variations within the CoW. The interaction between hemodynamic forces and the arterial wall are believed to be involved in the formation of cerebral aneurysms, especially at irregular geometries such as tortuous segments, bends, and bifurcations. The highest propensity of aneurysm formation is known to form at the anterior communicating artery (AcoA) and at the junctions of the internal carotid and posterior communicating arteries (PcoAs). Controversy still remains as to the existence of blood flow paths through the communicating arteries for a normal CoW. This paper experimentally describes the hemodynamic conditions through three thin walled patient specific models of a complete CoW based on medical images. These models were manufactured by a horizontal dip spin coating method and positioned within a custom made cerebral testing system that simulated symmetrical physiological afferent flow conditions through the internal carotid and vertebral arteries. The dip spin coating procedure produced excellent dimensional accuracy. There was an average of less than 4% variation in diameters and wall thicknesses throughout all manufactured CoW models. Our cerebral test facility demonstrated excellent cycle to cycle repeatability, with variations of less than 2% and 1% for the time and cycle averaged flow rates, respectively. The peak systolic flow rates had less than a 4% variation. Our flow visualizations showed four independent flow sources originating from all four inlet arteries impacting at and crossing the AcoA with bidirectional cross flows. The flow paths entering the left and right vertebral arteries dissipated throughout the CoW vasculature from the posterior to anterior sides, exiting through all efferent vessels. Two of the models had five flow impact locations, while the third model had an additional two impact locations within the posterior circulation caused by an additional bidirectional cross flows along the PcoAs during the accelerating and part of the decelerating phases. For a complete CoW, bidirectional cross flows exist within the AcoA and geometrical variations within the CoW geometry can either promote uni- or bidirectional cross flows along the PcoAs.


2014 ◽  
Vol 34 (4) ◽  
pp. 578-584 ◽  
Author(s):  
Zvonimir Vrselja ◽  
Hrvoje Brkic ◽  
Stefan Mrdenovic ◽  
Radivoje Radic ◽  
Goran Curic

Nearly 400 years ago, Thomas Willis described the arterial ring at the base of the brain (the circle of Willis, CW) and recognized it as a compensatory system in the case of arterial occlusion. This theory is still accepted. We present several arguments that via negativa should discard the compensatory theory. (1) Current theory is anthropocentric; it ignores other species and their analog structures. (2) Arterial pathologies are diseases of old age, appearing after gene propagation. (3) According to the current theory, evolution has foresight. (4) Its commonness among animals indicates that it is probably a convergent evolutionary structure. (5) It was observed that communicating arteries are too small for effective blood flow, and (6) missing or hypoplastic in the majority of the population. We infer that CW, under physiologic conditions, serves as a passive pressure dissipating system; without considerable blood flow, pressure is transferred from the high to low pressure end, the latter being another arterial component of CW. Pressure gradient exists because pulse wave and blood flow arrive into the skull through different cerebral arteries asynchronously, due to arterial tree asymmetry. Therefore, CW and its communicating arteries protect cerebral artery and blood–brain barrier from hemodynamic stress.


2015 ◽  
Vol 137 (11) ◽  
Author(s):  
Christine L. de Lancea ◽  
Tim David ◽  
Jordi Alastruey ◽  
Richard G. Brown

Blood flow through a vessel depends upon compliance and resistance. Resistance changes dynamically due to vasoconstriction and vasodilation as a result of metabolic activity, thus allowing for more or less flow to a particular area. The structure responsible for directing blood to the different areas of the brain and supplying the increase flow is the cerebral arterial circle (CAC). A series of 1D equations were utilized to model propagating flow and pressure waves from the left ventricle of the heart to the CAC. The focus of the current research was to understand the collateral capability of the circle. This was done by decreasing the peripheral resistance in each of the efferent arteries, up to 10% both unilaterally and bilaterally. The collateral patterns were then analyzed. After the initial 60 simulations, it became apparent that flow could increase beyond the scope of a 10% reduction and still be within in vivo conditions. Simulations with higher percentage decreases were performed such that the same amount of flow increase would be induced through each of the efferent arteries separately, same flow tests (SFTs), as well as those that were found to allow for the maximum flow increase through the stimulated artery, maximum flow tests (MFTs). The collateral pattern depended upon which efferent artery was stimulation and if the stimulation was unilaterally or bilaterally induced. With the same amount of flow increase through each of the efferent arteries, the MCAs (middle cerebral arteries) had the largest impact on the collateral capability of the circle, both unilaterally and bilaterally.


2021 ◽  
pp. 154431672110539
Author(s):  
Anastasiya Yu. Vishnyakova ◽  
Nataliya M. Medvedeva ◽  
Alexander B. Berdalin ◽  
Svetlana E. Lelyuk ◽  
Vladimir G. Lelyuk

Objective: The aim of this study was to determine blood flow volume (BFV) in the normal state and its features in patients with acute posterior circulation ischemic strokes (PCIS) and vertebrobasilar insufficiency (VBI) using color duplex sonography (DS).Methods: The study included DS data from 96 patients with verified PCIS (66 men and 30 women, aged 64±13 years) and 29 adults with VBI (17 men and 12 women, aged 66±11 years). The control group consisted of 65 healthy male volunteers of different ages.Results: In asymptomatic healthy volunteers, there was a significant decrease in BFV in the internal carotid artery (ICA) with age (502 ml/min in young people, 465 ml/min in the older subgroup) with rS = −0.24 ( p = 0.05), and the aggregated BFV in the vertebral arteries (VAs) turned out to be almost constant (141–143 ml/min). In patients with VBI, the aggregated BFV in the VAs (144 ml/min) did not differ from that in healthy volunteers, but the BFV values in the ICAs were significantly lower (325 ml/min). In patients with PCIS, the aggregated BFV in the ICAs was also significantly lower (399 ml/min) than in the control group but did not significantly differ from that in patients with VBI. In patients with PCIS, there was a significant decrease in the aggregated BFV in the VAs (105 ml/min), which distinguished this group from other examined patients.Conclusions: A significant decrease the BFV in the VA was observed only in patients with PCIS and was associated with the presence of steno-occlusive diseases (SOD) more often in the left VA. Patients with VBI had the most pronounced decrease in BFV in the ICA.


2014 ◽  
Vol 59 (No. 7) ◽  
pp. 343-348 ◽  
Author(s):  
W. Brudnicki ◽  
B. Skoczylas ◽  
R. Jablonski ◽  
W. Nowicki ◽  
A. Brudnicki ◽  
...  

The brain arteries derived from 50 adult degu individuals of both sexes were injected with synthetic latex introduced with a syringe into the left ventricle of the heart under constant pressure. After fixation in 5% formalin and brain preparation, it was found that the sources of the brain’s supply of blood are vertebral arteries and the basilar artery formed as a result of their anastomosis. The basilar artery gave rise to caudal cerebellar arteries and then divided into two branches which formed the arterial circle of the brain. The internal carotid arteries in degus, except for one case, were heavily reduced and did not play an important role in the blood supply to the brain. The arterial circle of the brain in 48% of the cases was open from the rostral side. Variation was identified in the anatomy and the pattern of the arteries of the base of the brain in the degu which involved an asymmetry of the descent of caudal cerebellar arteries (6.0%), rostral cerebellar arteries (8%) as well as middle cerebral arteries (12%). In 6% of the individuals double middle cerebral arteries were found. In one out of 50 cases there was observed a reduction in the left vertebral artery and the appearance of the internal carotid artery on the same side. In that case the left part of the arterial circle of the brain was supplied with blood by an internal carotid artery, which was present only in that animal.


2013 ◽  
Vol 02 (04) ◽  
pp. 180-189
Author(s):  
Iqbal S.

Abstract Background and aims: The cerebral circulation is constantly maintained by the anastomotic circle of Willis which is often anomalous in more than 50% of the normal adult brains. These anomalies increase the risk of the stroke and transient ischemic attack in older patients. Adequate blood flow through the circle of Willis is often necessary to prevent these ischemic infarctions. The anomalies of cerebral vessels are directly related to the differential growth of various parts of the brain. A detailed knowledge of the individual measurements of the cerebral arteries is useful to neurosurgeon in planning the shunt operations and in the choice of their patients. The present study is aimed to analyze the average dimensions of the vessels at the base of brain and an attempt to explain the common form of variations in terms of embryological development. Materials and methods: Fifty adult cadaveric brains were obtained from routine cadaveric dissections. The base of the brain with the circle of Willis was fixed in 10% formalin and preserved. The circle was analyzed for variations in the size, length and number of the component vessels and any asymmetry in the configuration. The dimensions of the vessels forming the circle were measured using graduated calipers. The observations were recorded and tabulated. Results: Asymmetry was observed in 10% to 36% of the circles in this study. Anomalies were more common in the posterior than in the anterior part of the circle. The posterior anomalies included hypoplastic vessels, absent vessels and embryonic derivation while anterior anomalies were predominantly of accessory vessels. Middle cerebral artery exhibited the least variations. In majority of the circles, left sided vessels were larger in diameter than the right. Conclusions: Variations are more common in the posterior than in the anterior part of the circle and on the right than on the left side of the brain. There was no correlation between the variations of circle of Willis of the right side and the left cerebral dominance. There seems to be no difference between races, concerning the anatomic variations of the brain circulation.


Sign in / Sign up

Export Citation Format

Share Document